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Abstract

In the absence of a successful vaccine against HIV-1, alternative means to cope

with the HIV pandemic have been explored. Antiretroviral (ARV) treatment

is commonly prescribed to HIV-infected individuals in an attempt to control

the infection. However, ARV treatment is very rigorous and generally com-

prises a highly toxic and costly multi-drug regimen designed for strict, life-long

adherence. ARV treatment interruption is an alternative treatment strategy

designed to maximize clinical benefits and alleviate some of the complications

associated with continuous treatment. It is theorized that treatment interrup-

tion can reset the virological setpoint by inducing controlled resurgences of

virus to boost HIV-specific CD8+ T cell activity to control viral replication.

Dynamical systems analysis is a mathematical tool used to describe the be-

havior of complex systems. This allows an unobtrusive, safe way to test treat-

ment interruption regimens. I have developed a novel mathematical model

that describes the dynamical interactions between HIV-specific T cell and virus

populations for two clinically-defined subgroups of HIV-1-infected individuals

called fast and slow progressors. The model is based on antiviral activity

imposed by HIV-specific CD8+ T cells that specifically target the virus by

removing virally-infected cells and the model accurately mimics clinical dis-
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ease progression patterns in these subgroups. Model results accurately predict

that treatment interruption induces resurgence of virus to boost HIV-specific

CD8+ T cell activity in both subgroups, but does not reset the virological

setpoint in either. These results are experimentally corroborated through an

assessment of quantitative and qualitative changes in HIV-specific CD8+ T

cell activities when virus loads are high (off-treatment) and low/undetectable

(on-treatment).

In this thesis, I provide an introduction to HIV and dynamical systems, a

complete analysis of the model derived to describe HIV immunopathogenesis,

a report on clinical and experimental observation of a small cohort of HIV-1-

infected individuals and a description of the integration of the mathematical,

clinical and experimental results.
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Chapter 1

Introduction

Human immunodeficiency virus type 1 (HIV-1), the causative agent of ac-

quired immune deficiency syndrome (AIDS), was isolated and identified in 1983

[Gallo et al., 1984]. HIV is a retrovirus: it stores its genetic information as

single-stranded ribonucleic acid (RNA) molecules instead of double-stranded

deoxyribonucleic acid (DNA) and reverses the normal genetic writing process

by converting viral RNA to viral DNA as part of its life cycle. HIV is a mem-

ber of a subgroup of the retrovirus family known as the lentiviruses because it

causes disease slowly. In the absence of treatment, infection generally spans a

period of approximately 10 years. HIV and AIDS remain at pandemic levels

with an estimated 40 million people living with HIV infection and 5 million

newly infected individuals in 2005. More than 25 million people have died of

AIDS since 1981 and there is no known cure [UNAIDS/WHO 2005 report].
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CHAPTER 1. INTRODUCTION 2

1.1 Host Infection

HIV is transmitted via blood or other body fluids, and infection with HIV

always results in chronic infection. Following infection with HIV, the amount

of virus detectable in the blood of the host, called the virus load, rises dramat-

ically. This increase in virus load is associated with flu-like symptoms, tending

to last for a few weeks to months, which disappear as the virus load recedes

to a lower stable level called the virological setpoint. The infected individ-

ual generally remains asymptomatic for years until eventually succumbing to

AIDS.

The definition of AIDS is ambiguous. In the United States, an HIV-infected

individual is said to have AIDS if their helper T cell count falls below 200 per

microlitre (ul) of peripheral blood [Centers for Disease Control, 2005]. In

Canada, an individual is considered to have AIDS if they develop an AIDS-

defining illness. There are cases of HIV-infected individuals who develop AIDS,

but following salvage or late treatment treatment regimens1, no longer have

AIDS according to these definitions.

1.2 HIV Immunopathogenesis

HIV immunopathogenesis is characterized by three phases: the acute phase,

the chronic phase and AIDS. Figure 1.1 is a schematic graph showing how T

cell and virus populations change throughout pathogenesis.

1Salvage Treatment: A drug combination that is used after other combinations have

failed. Often, salvage treatment is used to refer to regimens designed to combat highly

resistant HIV. Also called rescue therapy.
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Figure 1.1: HIV immunopathogenesis - Adapted from Microbiology and Im-

munology online - University of South Carolina - School of Medicine

In the early phase of acute HIV infection, the virus load increases reaching

concentrations of up to 100 million copies HIV RNA per millilitre of plasma

[Piatak et al., 1993; Mellors et al., 1995]. The presence of the virus at high

levels in the host induces potent cellular immune responses throughout the

following weeks. These immune responses act to lower the viral load by ef-

ficiently removing infected cells from the system until the imposed pressure

from the cellular immune response induces a state where the T cell and virus

populations are roughly in equilibrium. This equilibrium or balance implies
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that each population is in a stable state whereby they stay at relatively con-

stant levels. The virus load at the equilibrium state (the virological or viral

setpoint) is a strong predictor of the rate of disease progression [Altfeld et

al., 2005; Mellors et al., 1995; Notermans et al., 1998]. Establishment of a

virological setpoint generally marks the resolution of the acute phase and the

beginning of the chronic phase of infection. During the chronic phase, the

virus persists at setpoint levels and continuously stimulates the host immune

system via ongoing replication. It is during the chronic phase of infection that

the helper T cell (CD4+ T cell) population is slowly and steadily depleted.

This is the hallmark of HIV infection. The exact reason for this apparent slow

steady depletion of these cells remains elusive.

1.3 Cellular Infection

HIV preferentially infects helper T cells; the cells that coordinate cellular im-

mune reponses [Dalgleish et al., 1984; Klatzmann et al., 1984; McCune, 2001].

This leads to their eventual depletion and results in the collapse of the im-

mune system. The virus attaches to helper T cells via a high affinity interaction

between the cell-surface molecule CD4 (T4 antigen) and the external gp120

portion of the viral envelope protein complex. This binding is associated with

coreceptor binding to cellular chemokine receptors CCR5 or CXCR4 on the

CD4+ cell. Whether the virus binds coreceptor CCR5 or CXCR4 determines

the tropism of the virus. Individuals who lack a CCR5 coreceptor on their T

cells are virtually 100% resistant to HIV infection indicating the necessity of

this co-receptor for cell infection to occur. The union of gp120 and CD4 causes
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a conformational change to occur in the gp120 glycoprotein which allows an-

other part of gp120 to bind either CCR5 or CXCR4. After this secondary

interaction, the transmembrane portion of the envelope protein gp41 under-

goes a conformational change and embeds a fusogenic part of itself into the

host cell membrane [Levy; 1996]. The host cell and the viral envelope fuse and

the viral contents are released into the cytoplasm of the host cell. The viral

capsid is lost and viral RNA begins to be transcribed via reverse transcriptase

into viral double-stranded DNA (dsDNA) called the provirus. This dsDNA

gets integrated into the host cell DNA via another viral constituent enzyme

called integrase, rendering the cell infected for life. The integrated DNA is

called the integrated provirus. The integrated provirus serves as a template

for the synthesis of viral RNA. Cellular activation is necessary for integration

of the proviral HIV DNA into the host cell genome after transportation of the

pre-integration complex into the nucleus. When the infected cell is activated,

viral RNA is synthesized and moves into the cytoplasm. Viral messenger RNA

(mRNA) is subsequently translated into structural proteins and enzymes nec-

essary for synthesis of viral proteins and assembly of new virions. The mRNA

carries information that codes for viral proteins and enzymes necessary for

synthesis of viral proteins and assembly of new virions. Viral RNA and as-

sociated proteins are packaged into new virus particles that mature into new

infectious virions. This assembly begins at the cell membrane where the virion

forms and buds from the cell surface membrane. These new virions undergo

further maturation whereby the structural components undergo further pro-

cessing following budding.

Viral DNA integration into the host-cell genome is irreversible. Some cells
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become virus producers. Other cells remain latently infected. Latent infection

means that the cell is infected; the provirus is present, but the cell has not

yet become activated to begin the viral replication cycle. Some cells may

never become activated, or they may become activated at a later time point

in disease progression. Even if the virus is cleared from the bloodstream, it

can lie dormant in latently infected cells, later activated to produce teams of

new viral progeny.

All CD4+ T cells are all susceptible to infection by HIV [Janeway et al.,

2001; Douek et al., 2003; Ribeiro et al., 2002]. However, studies show that

HIV preferentially infects HIV-specific CD4+ T cells [Douek et al., 2002]. The

preferential infection of HIV-specific CD4+ T cells means that these cells are

preferentially depleted as well. More on this follows in Chapter 2.

1.4 Immune Response

The immune response to HIV is very much the same as the immune response

to any viral infection. This response includes the activation of both cellular

and humoral immunity. Once the virus breaches the mucosal barriers, resident

phagocytic cells such as macrophages and dendritic cells (DC), “take-up” viral

antigens and home to the local draining lymph node. En route to the lymph

node, these cells change functionally and phenotypically to become extremely

proficient antigen-presenting cells (APC). DC are the most potent inducers

of specific immune responses and are considered essential for the initiation

of primary antigen-specific immune responses. Antibodies are produced as

part of these primary antigen-specific responses to clear the virus from the
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body. These antibodies can be detected in the blood during infection and are

used to diagnose infection. When antibodies are detectable in the plasma or

blood, an individual is said to have seroconverted and is deemed HIV positive.

This usually occurs within six months of exposure to HIV and is the clearest

evidence of an adaptive immune response to infection with HIV.

A vital part of the adaptive immune reponse is the cellular or cell-mediated

response. It involves coordinated interactions between activated antigen-specific

CD4+ and CD8+ T cells that leads to the destruction of virally-infected cells

by antigen-specific CD8+ T cells. This creates a paradoxical situation. The

fact that the HIV-specific CD4+ T cells, which are necessary for an efficient

immune response against the virus, become targets for HIV-specific CD8+ T

cells causes further decay in the CD4+ T cell population. The HIV-specific

CD4+ T cell population, on average, comprises approximately 1/100 total

CD4+ cells in the chronic phase of infection [Douek et al., 2002].

HIV viral peptides can only be recognized via HIV-specific T cell receptor

(TCR) major histocompatability complex (MHC) interactions. When an HIV

peptide is presented via a TCR:MHC II interaction by an APC to an HIV-

specific CD4+ T cell, the cell becomes activated. The activation of the cell

causes it to proliferate and differentiate into an effector cell. As effector cells,

HIV-specific CD4+ T cells act to coordinate other cells of the immune system

to try to eradicate the virus from the host. During acute infection in vivo,

rapidly proliferating HIV-specific CD4+ T cells, in transition from näıve to

full effector phenotype, are highly susceptible to HIV infection [Douek et al.,

2002; Mehandru et al., 2004; Qingsheng et al., 2005].

HIV-specific CD4+ T cells help other cells, such as HIV-specific CD8+ T
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cells, proliferate and differentiate into effector cells by secreting cytokines such

as interleukin-2 (IL-2). IL-2 is a T cell growth factor and is essential for the

maintenance of an effective cellular immune response. CD8+ T cells produce

a cytokine called interferon-gamma (IFN-γ), that has antiviral properties.

HIV-specific CD8+ T cells recognize HIV antigens in the context of an

MHC class I-peptide complex on an APC and acquire a range of antiviral ac-

tivities including the ability to kill virally-infected cells. CD8+ T cells that kill

infected cells are called cytotoxic T lymphocytes (CTL). CTL can kill virally-

infected cells using a perforin-granzyme-based pathway. Perforin functions to

“perforate” the membranes of virally-infected cells to allow entry of the enzyme

granzyme, to trigger apoptosis of the infected target cell. CTL can kill their

targets rapidly because they store these preformed cytotoxic proteins in inac-

tive forms in a lytic granule and can kill many targets in succession [Janeway et

al., 2001; Isaaz et al., 1995]. In vitro and in vivo studies have shown that CTL

aptly kill virally-infected cells [Macatonia et al., 1991; Musey et al., 1997]. The

best evidence for the clinical importance of the control of HIV-infected cells

by HIV-specific CTL comes from studies relating the numbers and activity

of CD8+ T cells to viral load. The number of HIV-specific CD8+ T cells is

inversely correlated to plasma RNA viral load: when HIV-specific CD8+ T cell

numbers are high, the virus load is low. Similarly, patients with high levels of

HIV-specific CD8+ T cells show slower progression of disease than those with

low levels [Landay et al., 1993; Borrow et al., 1994; Betts et al., 2005; Hess

et al., 2004]. HIV-specific CD8+ T cells can also carry out effector functions

as non-cytolytic CD8+ T cells by producing antiviral cytokines such as IFN-γ

and tumor necrosis factors (TNF)-α and β. IFN-γ directly inhibits viral repli-
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cation, and also induces the increased expression of MHC class I and other

molecules involved in peptide loading of the newly synthesized MHC class I

peptides in infected cells. This increases the chance that infected cells will be

recognized as target cells for cytotoxic attack [Janeway et al., 2001; McMichael

& Rowland-Jones, 2001]. TNF-α and β can act synergistically with IFN-γ to

enhance the antiviral attack. Ultimately, the immune response against HIV

controls but does not eradicate HIV from the host.

As part of the cellular immune response against HIV, some HIV-specific

T cells become long-lived memory cells. These memory cells, upon secondary,

tertiary, etc. encounters with HIV, are primed to impose subsequent immune

responses when re-challenged by the virus. The development of immunologi-

cal memory is the hallmark of the adaptive immune response and is why we

can become immune to some viruses, such as Varicella-Zoster Virus (VZV):

the virus that causes chicken pox and shingles [Janeway et al., 2001]. Sec-

ondary immune responses are typically fast and efficient: the host does not

know that the immune system has been re-challenged. Once the infectious

agent has been cleared from the body, the immune response effectively ends.

However, because HIV is a chronic infection, the processes of T cell activation,

proliferation and differentiation are ongoing. In some HIV-infected individu-

als, the continued presence of HIV can somehow impair these processes. For

example, many studies have shown that HIV can eventually prevent the ter-

minal differentiation of effector memory T cells into fully-functional mature

effector cells (CD45RA+ CCR7-) [Champagne et al., 2001; Van Baarle, 2002;

Shankar et al., 2000; Hess et al., 2004; Yue et al., 2004]. Cytokines necessary

for maintenance of effective proliferative responses and proper maturation are
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also reduced in some HIV-infected individuals [McNeil et al., 2001; Kawamura

et al., 2003]. Naturally, impairment of any stage of the immune response

provides the virus an advantage.

As previously indicated, several factors contribute to the slow steady de-

pletion of CD4+ T cells. One of these is the direct cytopathocity of HIV.

Each infected cell that becomes activated as part of an immune response, not

necessarily against HIV, becomes a virus factory. Eventually, these cells may

succumb to death by continuous viral budding or via apoptotic mechanisms

mediated by CTL.

1.5 Treatment

In the absence of a successful vaccine, alternative means are needed to cope

with HIV. Presently, the only somewhat practical solution to the problem is

antiretroviral drug treatment. Antiretroviral treatment effectively reduces the

virus load in most HIV-1-infected individuals. There are currently four ma-

jor classes of antiretroviral drugs: nucleoside analogue reverse transcriptase

inhibitors (NRTIs), nonnucleoside reverse transcriptase inhibitors (NNRTIs),

protease inhibitors (PIs) and fusion inhibitors (FIs). These drugs act at dif-

ferent points during the infection/replication process but all suppress viral

replication. FIs prevent the host cell from becoming infected. NRTIs and

NNRTIs prevent the provirus from being produced. PIs on the other hand act

subsequent to infection of the host cell to prevent the formation of new virions.

Ultimately, these drugs should be taken in combination to reap the full bene-

fits of combination therapy. Highly active antiretroviral treatment (HAART)
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generally comprises a combination of three NRTIs, NNRTIs and PIs and has

proven quite effective in suppressing viral replication and reducing virus loads

to undetectable levels, thereby prolonging the lives of HIV-infected individuals.

However, due to toxicity of the drugs to the individual, adherence problems are

prevalent among HAART users [Office of AIDS Research Advisory Council,

2004].

The toxicity of HAART can lead to secondary health problems and the

necessity for additional prescription drugs to control clinical complications. In

addition, antiretroviral drugs are quite costly to manufacture and distribute.

Strict adherence is important in the context of HAART since the virus repli-

cates very quickly. Non-adherence is associated with viral rebound and can

induce the emergence of drug resistant virus that repopulates the host. In

short, it is potentially dangerous to randomly interrupt drug treatment once

it has been initiated because it is not known what the short-term or long-term

effects will be.

Antiretroviral treatment has also been associated with changes in HIV-

specific CD8+ T cell activity while suppressing viral replication and thus re-

ducing antigenic stimulation [Casazza et al., 2005; Lacabaratz-Porret et al.,

2003; Appay et al., 2002]. Without treatment, a high number of HIV-specific

CD8+ T cells often persists into late infection and can still be detectable when

AIDS develops in some HIV-1-infected individuals [Appay et al., 2002]. How-

ever, it is the quality, not just the quantity of these cells that is important

in determining how an individual progresses through disease. This will be

discussed further in Chapter 6. Since treatment can be initiated at any point

during infection, it is important to investigate the clinical and immunological
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effects of introducing and withdrawing treatment, such as changes in HIV-

specific CD8+ T cell activity, during the acute and chronic phases of infection

to maximize potential benefits of treatment regimens during these phases. For

example, studies show that initiation of antiretroviral treatment during the

acute phase of infection preserves HIV-specific T cell populations to promote

better prognoses and to reduce virological setpoints [Borrow et al., 1994; Alt-

feld et al., 2001; Rosenberg et al., 2000; Oxenius et al., 2000].

The chronic phase of infection is associated with an equilibrium state of

the host. Antiretroviral treatment perturbs this equilibrium state by reducing

the virus load dramatically. Therefore, it is vital to understand how the im-

mune system players, such as the HIV-specific T cell populations, respond to

this perturbation before attempting to assign treatment interruption regimens

[Nikolova et al., 2005; Benito et al., 2003].

1.5.1 Treatment interruption

The goal of any interruption scheme is to maintain clinical benefits of treat-

ment, such as low or undetectable virus load, while concurrently reducing

drug toxicity to the individual. Monitored or structured treatment interrup-

tion studies allow an investigation into the clinical and immunological effects

of missing or interrupting treatment. Studies show that HIV-specific immune

responses can increase during a treatment interruption [Garcia et al., 2000;

Montaner, 2001]. This “boost” in the HIV-specific immune response (due

to an increase in virus antigen load) does not necessarily represent construc-

tive immune enhancement [Ortiz et al., 2002]. There is variability in results

from clinical trials. Some provide evidence to support constructive immune
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enhancement and others provide evidence to refute this.

One of the reasons for variablity in experimental and clinical studies is the

variability in test subjects. No two HIV-infected individuals progress through

disease in exactly the same manner. Therefore, unless we know ahead of time

how an individual is progessing through disease, only generalizations can be

made as to how antiretroviral treatment will affect them, both clinically and

immunologically, or when it is advisable to interrupt treatment. If we can

pre-classify HIV-infected individuals in terms of disease progression, we may

more confidently determine whether or not they will benefit from treatment

interruption.

1.6 Fast and slow progressors

Studies have shown that HIV-infected individuals can be subgrouped with re-

spect to disease progression rates [Jansen et al., 2004]. Each HIV-infected

individual in this study fits into one of two categories; those who reasonably

control viral replication in the absence of treatment and those who do not.

Reasonable control implies a balance between the HIV-specific CD8+ T cells

and the virus whereby the virus load is maintained at levels associated with

slow or inapparent disease progression (low virological setpoint). More specifi-

cally, if an HIV-infected individual experiences rapidly falling CD4 counts and

rapid viral rebound following treatment interruption, they are classified as a

fast progressor. If an HIV-infected individual maintains a stable CD4 count

and a virus load at a low level following treatment interruption, they are clas-

sified as a slow progressor. For the purposes of this thesis, a controllable or
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low level comprises an average off-treatment virus load less than or equal to

4.5 (logarithmic scale) RNA copies per millilitre (ml) of blood. Conversely,

an uncontrollable level comprises an average off-treatment virus load greater

than 4.5 RNA copies per ml of blood.

The balance between the HIV-specific CD8+ T cells and the virus in the

HIV-infected study subjects can be examined by measuring the HIV-specific

CD8+ T cell activity on and off-treatment when the virus load is both low

(undetectable) and high, respectively. The study participants in the cohort

were not engaged in a structured treatment interruption trial, but periodically

interrupted treatment either of their own volition, or under the advice of their

clinician.

1.7 Why use modeling?

Since the outcome of a clinical trial may not be desirable and the immunolog-

ical effects of interrupting treatment are not yet clearly defined, it is prudent

to explore alternative means to investigate the effects of interrupting treat-

ment. Mathematical modeling allows for an unobtrusive, safe means by which

to test various treatment interruption strategies. Mathematical models are

the tools we use to gain theoretical access to the real world. I have developed

a novel mathematical model to examine the effects of treatment interruption

and to investigate whether or not treatment interruption can be used to boost

immune HIV-specific CD8+ T cell responses to lower the virological setpoint.

In the following chapter, I provide an introduction to mathematical mod-

eling of dynamical systems and describe how the model will be analysed and
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how this analysis will be used to answer some of the questions raised here.



Chapter 2

Modeling of dynamical systems

No human investigation can be called real science if it cannot be

demonstrated mathematically. - Leonardo da Vinci (1452-1519)

This chapter is devoted to defining mathematical concepts using theorems

and mathematical definitions. See introductory differential equations texts,

such as Boyce and DiPrima [2004] for details.

2.1 Mathematical Models

Mathematical modeling of dynamical systems is a very useful tool for analyzing

how a system evolves in time and how it reacts to perturbations. Mathemat-

ical models, in general, are sets of equations that describe the behaviour of a

system via dependent and independent variables. The HIV-infected immune

system can be modeled as a dynamical system of many variables including im-

mune cell and virus populations. HIV pathogenesis is associated with changes

in the size of each variable population as the immune system attempts to elim-

16
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inate the virus from the host. The state of the HIV-infected immune system

at any time t is specified by the values of the variables at t. Mathematical

models that describe this system involve nonlinear differential equations be-

cause the variables in the model usually do not change in direct proportion

to other variables. In general, exact solutions cannot be found for nonlinear

systems. Therefore, analysis of such nonlinear dynamical systems is commonly

approached in a qualitative manner, especially when the system involves many

variables. This is because the components of the equations that make up the

system are not known precisely. Dynamical systems analysis allows us to find

the eventual behaviour of a system without having to know parameter values

accurately or even having to know the terms of the system precisely. By ana-

lyzing the system in a qualitative manner, we do not have to rely on numerical

techniques which, in turn, rely on the validity or precision of the equations

from which they originate.

In this study, I analyze the system by determining the stability of the

system in the neighborhood of equilibrium points, or fixed points, according

to the following protocol:

• finding the fixed points of the system of equations

• linearizing the system in the neighborhoods of the fixed points

• determining the eigenvalues of the resulting linearized equations to assess

stabilities of fixed points

This protocol allows the determination of the stability properties of any

fixed points that may exist. Maple software was used to determine all fixed

points and eigenvalues.
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2.2 Finding the Fixed Points

Fixed points are locations in phase space. Phase space is the set of all possible

states of a dynamical system. The dimension of the phase space is the number

of variables in the system. The path in phase space traced out by a solution of

a dynamical system is called an orbit. A fixed point is a special type of orbit

that is just a single point in phase space as the system changes with time.

Phase plane analysis is a way to determine the locations and stabilites of

fixed points in phase space. It characterizes a system and its solutions in a

single picture called a phase portrait or a phase diagram. Figure 2.1 is a phase

diagram illustrating the location of a single fixed point in three-dimensional

phase space. This particular fixed point is an asymptotically stable spiral node

and is located at the point (x, y, z) = (2, 2, 4). All orbits in (x − y − z)-phase

space spiral inward to this stable fixed point. Directional arrows are not shown

in the diagram.

A fixed point, also known as an equilibrium or steady state, corresponds

to a motionless state of a system. The fixed point can be stable or unstable,

depending on nature of the eigenvalues of the fixed point. The fixed point in

Figure 2.1 is (asymptotically) stable in that it attracts nearby orbits in phase

space. A fixed point that is unstable repels nearby orbits in phase space.

Theorem 2.2.1. Consider the nonlinear system of ordinary differential equa-

tions

dxi

dt
= fi(x), for i = 1, . . . , n (2.2.1)
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Figure 2.1: A phase diagram for a three-dimensional system showing a single

stable fixed point at (x, y, z) = (2, 2, 4).

where fi are nonlinear functions of x, and

x = (x1, . . . , xn).

We can write (2.2.1) in vector notation as ẋ = f(x).

Definition 2.2.1. A fixed point x ∈ R
n is a point for which

fi(x) = 0

for all i = 1, . . . , n.

This means that the point x corresponds to a constant solution of the differ-

ential equation system (2.2.1). The fixed point corresponds to an equilibrium
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solution of the equation: x(t) = x that satisfies the system of equations for all

time.

Every fixed point inherently has a stability property. To determine the

stability property of a fixed point, we must solve the eigenvalue problem. To

do this, we must first understand ideas and techniques of linear algebra.

2.3 Solution of a system of linear ODEs

Solving a system of linear (or nonlinear) differential equations can be facilitated

using linear algebra. Linear algebra is the part of algebra that deals with the

theory of linear equations and linear transformation. We use these theories to

solve the eigenvalue problem.

A set of n simultaneous linear algebraic equations in n variables,

a11x1+ a12x2+ · · ·+ a1nxn = b1

...
...

an1x1+ an2xn+ · · ·+ annxn = bn

can be written as

Ax = b,

where the n × n matrix A and the vector b are given and the components of

x are to be determined.

The equation

Ax = b

can be viewed as a linear transformation that transforms a given vector x into



CHAPTER 2. MODELING OF DYNAMICAL SYSTEMS 21

a new vector b. To find such vectors, we set

b = λx

where λ is a scalar proportionality factor, and seek solutions of the equations

Ax = λx

or

(A− λI)x = 0,

where I is the identity matrix. The latter equation has nonzero solutions if

and only if λ is chosen so that

det(A − λI) = 0.

This equation is called the characteristic equation. Values of λ that satisfy

the characteristic equation are called eigenvalues of the matrix A. Thus, the

eigenvalues of A are the roots or solutions of the characteristic equation.

It turns out that the eigenvalue problem for systems of linear algebraic

equations is connected to the solution of systems of linear differential equa-

tions. The solution of a system of linear differential equations reduces to the

eigenvalue problem for algebraic equations in the following way.

An non-autonomous system of n linear differential equations

ẋ1 = a11(t)x1+ a12(t)x2+ · · ·+ a1n(t)xn

...

ẋn = an1(t)x1+ an2(t)x2+ · · ·+ ann(t)xn

can be written as

ẋ = A(t)x,
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where x1, x2, . . . , xn are the components of a vector x, and a11(t), . . . , ann(t)

are the elements of an n × n matrix A(t).

The eigenvalues of a matrix A can be used to find solutions for differential

equations in the following way:

Theorem 2.3.1. The system of differential equations ẋ = Ax has solution

x(t) = cveλt if and only if for the matrix A, λ is an eigenvalue and v its

corresponding eigenvector.

2.4 Nonlinear systems of ODEs

To linearize a nonlinear system of differential equations ẋ = f(x) near any

point x, we calculate and solve the Jacobian matrix of the system.

Definition 2.4.1. The Jacobian matrix is the matrix of all first-order partial

derivatives of a vector-valued function. It represents the best linear approxi-

mation to a differentiable function near a given point.

Given the system ẋ = f(x), we linearize around a fixed point using the

Jacobian to obtain ẋ = Jx, where J is evaluated at the fixed point.

Consider the vector-valued function that contains the real-valued compo-

nent functions f1(x1, x2) and f2(x1, x2). The partial derivatives of these func-

tions can be organized in a 2 × 2 matrix as follows:

J =





∂f1

∂x1

∂f1

∂x2

∂f2

∂x1

∂f2

∂x2



 (2.4.1)
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The characteristic equation and eigenvalues are found by applying the rules

described for linear systems. However, instead of solving the eigenvalue prob-

lem using the matrix A (see section 2.3), we solve

Jx = λx

or

(J − λI)x = 0,

where the Jacobian matrix J takes the place of the matrix A. Thus the

eigenvalues can be found by solving the characteristic equation

det(J − λI) = 0.

The solutions of the characteristic equation are precisely the eigenvalues of the

matrix J.

2.5 Stability of a fixed point

The stability properties of fixed points for nonlinear systems are generally

the same as for linear systems in the neighborhood of the fixed point. From

the solutions of linear systems we gain information about the stabilites of fixed

points from direct inspection of the eigenvalues. Eigenvalues can be real-valued

or complex. Complex eigenvalues always exist in pairs and cause oscillatory

effects in system solutions. If the real parts of all eigenvalues are negative,

then the fixed point is stable.

For stable fixed points, all solutions with initial conditions in the neighbor-

hood of the fixed point will approach it as t → ∞. If one or more eigenvalues
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of a fixed point have positive real parts, the fixed point is unstable. Some

or all of the solutions with initial conditions starting in the neighborhood of

the fixed point will diverge from it as t → ∞. Thus, upon inspection of the

real parts of the eigenvalues for a given nth-order nonlinear system of ordinary

differential equations, the stability of the given fixed point can be determined.

Fixed points can be locally or globally stable. A fixed point is locally stable

with orbits from nearby initial conditions tending to the stable fixed point if

the eigenvalues of a linearized system have negative real parts. A fixed point

is globally stable if all initial conditions have orbits tending to the stable fixed

point.

So far, I have described how to obtain qualitative information about non-

linear systems of equations without having to solve them. The determination

of fixed points and their stabilities based on the nature of the eigenvalues pro-

vides a geometric picture of the system solutions. In order to further assess the

qualitative nature of a dynamical system, bifurcation theory can be employed.

2.6 Bifurcation Analysis

Bifurcation analysis is a powerful tool in dynamical systems. It allows a vi-

sualization of qualitative changes that may occur in a dynamical system as a

single parameter is varied, and tells us about the sensitivity of the system to

parameter changes. Its power lies in the fact that the system behaviour and

how it reacts to perturbations (changes in parameter values) can be known,

without having to know exact parameter values. Approximations or estimates

of parameter values provide a starting point from which these behaviours can



CHAPTER 2. MODELING OF DYNAMICAL SYSTEMS 25

be examined, and are usually obtained experimentally.

Qualitative changes in a system can be visualized by generating bifurcation

diagrams. A bifurcation diagram is a plot which gives fixed point solutions as

a function of a (control) parameter. This plot represents all possible long-term

behaviours of the system as the parameter is varied. The diagram is made up

of branches that are either solid or dotted lines representing the locations of

stable or unstable fixed points of the system, respectively.

Treatment is represented by a parameter in the model developed for this

thesis. Since this parameter represents an external stimulus on the system (the

system functions normally in the absence of this stimulus), its value can be

varied in a controlled way to see how the system reacts according to changes

in fixed points and their stabilites. Therefore, bifurcation analysis will allow

a visualization of the effects of treatment on the system.

A bifurcation in mathematics involves the divergence of the eventual state

of a dynamical system. At a bifurcation value of a parameter, the qualitative

nature of the solution of the system changes in that the number of fixed points

and/or the stability of fixed points changes.

Solutions are different on either side of a bifurcation point. For example, if

a critical parameter changes, a fixed point that once was stable, may become

unstable, as is the case in a transcritical bifurcation. A solution that may

represent a undesirable state for an HIV-infected individual may involve stable

low levels of T cells and detectable virus load in the absence of treatment. A

more favorable state may be induced using treatment. Treatment lowers the

virus load to undetectable levels and generally raises T cell counts. Since

some system behaviours may be harder to change than others that may be
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highly sensitive to small pertubation or change, it is necessary to study the

mechanisms by which various system behaviours arise before attempting to

manipulate the system.

Bifurcation analysis is also useful when examining potential qualitative

changes that may occur when other parameters in the system are varied. In

this study, bifurcation theory will be used to test the effects of modulating

treatment efficacy on the system and to examine the effects of varying a pa-

rameter that represents the removal rate of infected cells from the system.

(Refer to Chapter 4.)

2.6.1 Types of bifurcations

There are several common types of bifurcations. A saddle-node bifurcation is a

local bifurcation in which two fixed points of a dynamical system annihilate one

another. Figure 2.2 is a bifurcation diagram showing a saddle-node bifurcation.

The phase space variable is x and the control parameter is c. The bifurcation

point is at c=0 and x = 0 ((c, x) = (0, 0)). Stable and unstable fixed points are

drawn as solid and dotted lines, respectively. The diagram shows all possible

long-term behaviours of x for a range of values for c. For example, when c=1,

there are two fixed points: one is stable (solid branch) and one is unstable

(dotted branch).

A saddle-node bifurcation is the most common (generic) type of bifurcation

in biological systems. However, saddle-node bifurcations do not arise for the

model developed for this thesis. Rather, transcritical bifurcations are seen.

Transcritical bifurcations are saddle-node bifurcations but with a special kind

of symmetry in the equations, albeit not obvious. The equations in the model
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Figure 2.2: A bifurcation diagram showing a saddle-node bifurcation

developed for this thesis have this special symmetry, thus we see transcritical

bifurcations and not saddle-node bifurcations.

A transcritical bifurcation involves an exchange of stability between two

fixed points. At a particular parameter value, the fixed point transfers its

stability to another fixed point. Figure 2.3 is a bifurcation diagram showing

a transcritical bifurcation. The phase space variable is x and the control

parameter is c.

Figure 2.3 shows that there is an exchange in stability at the bifurcation

point c = 1 and x = 1 ((c, x) = (1, 1)) where two branches of fixed points

intersect and transfer their stability types.

In this study, only stable fixed points are analyzed because the system will

move from an initial state toward stable fixed points and away from unstable

fixed points.

Armed with the above mathematical theories and definitions, I first intro-
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Figure 2.3: A bifurcation diagram showing a transcritical bifurcation

duce a basic model of HIV infection and describe its strengths and weaknesses.

The novel model developed for the thesis is then introduced and I proceed

with an analysis of the model system. The analysis adheres to the following

methodology.

1. solve the system for fixed points

2. determine the stability of these fixed points via eigenvalues

3. generate phase diagrams in three-space to show how variable trajectories

from various initial conditions move through four-space

4. plot numerical solutions of the system variables with respect to time

5. generate bifurcation diagrams to illustrate how fixed point solutions

change as a control parameter is varied
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Plotting the numerical solutions of a system gives us trajectories or time

series of each variable in the system. This is a another graphical method that

allows us to obtain information about a system and its solutions. Bifurcation

diagrams give us a much broader view of the system behaviour because we can

visualize many trajectories at one time.

2.7 The Basic Model - A Dynamical System

Perhaps the most well known dynamical system describing HIV pathogenesis

is that of Perelson et al. [1995]. This basic model describes the rate of change

of three variables: uninfected target cells, T , infected target cells, T ∗, and

virus particles, V , at any time t. The equations for this basic model are as

follows:

dT

dt
= s + pT

(

1 −
T

Tmax

)

− dT T − kV T (2.7.1a)

dT ∗

dt
= kV T − δT ∗ (2.7.1b)

dV

dt
= NδT ∗ − cV (2.7.1c)

The parameters are s, p, Tmax, dT , k, δ, N and c and represent rate con-

stants. Uninfected target cells enter the system from the thymus at a constant

rate s. The growth of this population is assumed to be logistic in that it can

only grow until it reaches a carrying capacity Tmax. This carrying capacity

is regulated by homeostatic mechanisms that regulate overall T cell numbers:

there is a finite number of cells that can occupy the body at any given time.

p is the intrinsic growth rate. T cells will ultimately die at some constant rate
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dT , also as part of normal homeostatic mechanisms.

When the virus enters the system, the susceptible uninfected target cell

population becomes infected at rate k (proportional to T and V ). This creates

the population of infected target cells, T ∗, whose members die at a constant

rate δ. As each infected cell dies a certain number of virions (N) are released

into the body. The virus also dies by natural processes at a constant rate c.

The model predicts a single stable fixed point (T , T
∗

, V ) with positive fixed

point coordinates. These coordinates vary according to the parameter values

selected.

This basic model has allowed crucial insights into the ‘fast’ dynamics of the

virus and how it reacts to antiretroviral treatment. Antiretroviral treatment is

introduced to the equations as a parameter that modifies the infection rate k

or the production rate of virus Nδ. The viral turnover rate is extremely high;

higher than previously estimated or assumed [Perelson et al., 1995; Ho et al.,

1995]. Numerous other models utilize the fundamental concepts of this basic

model as it quite elegantly and simplistically describes the general behaviours

of the variables T , T ∗ and V and how they change together in time both in

the presence and absence of treatment.

Perelson has had many collaborations to develop an array of mathematical

models that describe various aspects of HIV infection. Essunger and Perelson

[1994] analyze models that describe the interactions between virgin, activated

and memory CD4+ T cells and HIV. These models use a previously developed

model as a template [McClean & Nowak, 1992] but are novel in their explicit

treatment of a latent stage in HIV infection. All terms in the models are

expressed in predator-prey, logistic or density dependent forms.
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Callaway and Perelson [2002] describe a set of models that are derived from

the standard model to explain sustained low on-treatment viral loads. These

models include quiescent, chronically-infected and latently-infected cells, ac-

count for the role of follicular dendritic cells, cell-mediated immunity and also

differential effects of antiretroviral drugs.

Denise Kirschner has also assumed a prevalent role in the development

of mathematical models of HIV infection. In 1993, Kirschner collaborated

with Perelson and DeBoer [Perelson et al., 1993] to describe the dynamics of

HIV infection of CD4+ T cells. This model describes the interactions between

uninfected, latently and actively-infected T cell and virus populations. The

model shows that HIV cytopathicity of peripheral CD4+ T cells and their

precursors account for T cell depletion and explains low levels of infected cells

and ongoing viral replication. In 1996, she developed a three-dimensional

mathematical model that includes uninfected CD4+ T cells, infected CD4+ T

cells and the virus [Kirschner, 1996]. A novel aspect of this model was the

incorporation of a term that describes the T cell-mediated immune response

against HIV mediated by CD4+ and CD8+ T cell populations. The term is

a saturation term and represents the growth of both CD4+ and CD8+ T cell

populations due to antigenic stimulation due to the presence of the virus.

Antigen specificity is a key element to consider when incorporating the T

cell-mediated immune response against HIV into a mathematical model [Altes

et al., 2003]. With respect to cellular immune responses, only HIV-specific cells

can respond to and mount effective anti-HIV attacks. Leon Cooper published

the first mathematical model [Cooper, 1986] to include the antigen-specific im-

mune response to HIV. The model considers the effect of the immune response
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by including antigen-specific T and B cells and how they respond to HIV. The

model accounts for interactions between antigen and antigen presenting cells,

but assumes that they occur only between B cells and the virus.1 All terms in

the model are of constant, density-dependent or predator-prey forms.

There are many other ordinary differential equation models of HIV infec-

tion that describe the interactions between immune cell populations and HIV.

The development and use of these models was often for the same basic pur-

poses: to describe HIV infection as realistically as possible in an attempt to

elucidate parameter values, explain the slow steady depletion of CD4+ T cells,

or show the effects of treatment and treatment interruption [Notermans et al.,

1998; Komarova et al., 2003; Frost et al., 2002; Nowak & Bangham, 1996; Ding

& Wu, 1999; Coffin, 1995; Borghans et al., 1999; Agrawal & Linderman, 1996;

Altes et al., 2003; Bajaria et al., 2002; Blower, 2001; Hraba & Dolezal, 1996,

Wodarz & Nowak, 2002; Nowak et al., 1997; Stafford et al., 1999; Witten &

Perelson, 2004; Kirschner et al., 2000; Brandt et al., 2001; Perelson & Nelson,

1999; Perelson, 2002].

The use of mathematical models to predict the effects of interrupting treat-

ment have become increasingly prevalent throughout the years [Adams et al.,

2004; Lori & Lisziewicz, 2001; De Jong et al., 1997]. Significantly, Bonhoeffer

et al. [2000] developed a set of population dynamical models to study the

effect of structured treatment interruptions on immune effector cells, latently-

infected cells and drug resistance. They use three versions of the same model

to test the effects of treatment interruption on the model system. The terms

in the model are of constant, density-dependent and predator-prey form. The

1B cells are one of three types of professional antigen presenting cell.
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models show that if the effector cell population grows during the treatment

phase of a treatment interruption regimen, then transient or sustained virus

control can be achieved whereby the virological setpoint is reduced to lower

levels.

One of the purposes of this thesis is to examine the role of HIV-specific

CD8+ T cells in determining disease progression patterns with the aim of

testing treatment interruption regimens. To do this, I explicitly include these

cells as a variable population in a model of HIV immunopathogenesis. Studies

show that the virus is controlled by the development of potent HIV-specific

CD8+ T cell responses [Musey et al., 1997; Kalams et al., 1999; Dalod et al.,

1999]. Studies have also shown a direct correlation between that activities of

HIV-specific CD8+ T cells in the acute and chronic phases of infection, the

virological setpoint level and subsequent disease progression patterns. HIV-

specific CD8+ T cells kill virally-infected CD4+ T cells, thereby constituting

a source of depletion of both antigen-specific and non-specific CD4+ T cells.

Therefore, the explicit inclusion of a variable in a model that represents the

HIV-specific CD8+ T cell population can allow us to more precisely describe

and examine the dynamical interactions between these and other HIV-specific

T cell and virus populations. In turn, this will allow us to make accurate

predictions about disease progression patterns and the effects of treatment

and treatment interruptions with respect to the roles of HIV-specific T cells.

In assigning meaning to model variables, I consider the fact that cellular

immune responses against HIV are mediated by HIV-specific T cells: they

are the only subset of T cells that have the ability to recognize the virus and

mount effective anti-HIV responses. It is assumed that the immune response
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is directly proportional to the number of HIV-specific (CD4+) T cells [Altes

et al., 2003; Callaway et al., 1999; Kalams et al., 1999].

The novelty of the model arises from its description of the dynamical inter-

actions between HIV-specific T cell and virus populations. I explicitly include

a variable that represents the CD8+ T cell population and make the T cell

populations antigen specific. The model borrows from previously discussed

conceptual ideas in deriving some of the terms. In the following chapter, I

provide a description of the model variables and parameters. To assess the

impact of including a variable that represents the HIV-specific CD8+ T cells

on disease progression and attainment of the virological setpoint, I perform an

analysis of the system when this population of cells is included both implicitly

and explicitly in the system.



Chapter 3

Model of HIV

Immunopathogenesis

The model is four-dimensional and describes the dynamical interactions be-

tween three HIV-specific immune cell populations and HIV. The variables in

the model are given in Table 3.1 and represent populations expressed as a

concentration per microlitre (ul) of blood.

Table 3.1: Description of model variables

variable description units

U uninfected HIV-specific CD4+ T cells cells/ul

I infected HIV-specific CD4+ T cells cells/ul

C HIV-specific CD8+ T cells cells/ul

V plasma virus virions/ul

35
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As previously described, I am interested in the activities of HIV-specific

CD8+ T cells. Therefore, I express the variable populations as HIV-specific T

cell populations.

The parameters in the model are described in Table 3.2. The parameters

are rates reported in the literature with exception of ρ.

Table 3.2: Description of model parameters

a1 = influx rate of uninfected HIV-specific CD4+ T cells

a2 = proliferation rate of uninfected HIV-specific CD4+ T cells due to

antigenic stimulation

α = saturation rate constant for uninfected HIV-specific CD4+ T cells

a3 = rate of encounters × the probability that uninfected HIV-specific CD4+

T cells are converted to infected cells when an encounter occurs, U → V

a4 = death rate of uninfected HIV-specific CD4+ T cells

b1 = rate at which infected HIV-specific CD4+ T cells are killed by effector

CD8+ T cells (CTL)

b2 = death rate of infected HIV-specific CD4+ T cells

c1 = influx rate of HIV-specific CD8+ T cells

c2 = proliferation rate of HIV-specific CD8+ T cells due to antigenic stimulation

δ = saturation rate constant for HIV-specific CD8+ T cells

c3 = death rate of HIV-specific CD8+ T cells

g1 = clearance rate of plasma virus

h = the number of virions released per infected CD4+ T cell

ρ = conversion constant = the fraction of the total CD4+ T

cell population that is HIV-specific

r = antiretroviral treatment

ρ is a dimensionless parameter which converts the number of virions re-
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leased per infected HIV-specific CD4+ T cell to the number released per in-

fected CD4+ T cell. For simplicity, I assume that the ratio of HIV-specific

CD4+ T cells to total CD4+ T cells is constant throughout infection. This

accounts for the fact that virions can be produced by all infected CD4+ T

cells and not just infected HIV-specific CD4+ T cells.

The model is as follows:

dU

dt
= a1 +

a2UV

α + V
− a3UV − a4U (3.0.1a)

dI

dt
= a3UV − b1IC − b2I (3.0.1b)

dC

dt
= c1 +

c2CV

δ + V
− c3C (3.0.1c)

dV

dt
=

1

r + 1
b2ρhI − g1V (3.0.1d)

3.1 Description of Terms

The terms in the model are of constant, saturation, density-dependent or

predator-prey form and are described in the following subsections.

3.1.1 Equation 1

(3.0.1a) is composed of four terms: two terms to account for growth and two

terms to account for loss of the uninfected HIV-specific CD4+ T cells. The

term a1 is a rate constant and represents the influx of these cells, assumedly

of thymic origin. The second term represents the production of HIV-specific

CD4+ T cells due to antigenic stimulation by the virus where a2 is the prolifer-

ation rate constant. Proliferation is the dominant growth factor for this subset
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of cells. α represents the saturation constant whereby there is some maximum

rate of proliferation (a2U) when all the antigenically stimulated cells are satu-

rated: an increase in antigenic stimulation will not further increase the growth

rate of the infected cell population. The third term in the equation represents

the switch in status from uninfected to infected which is dependent on V .

a3 is the infection rate constant, and infection is assumed to occur at a rate

proportional to the density of virions and uninfected target cells. a4 is the

death rate constant. Death is assumed to be proportional to the density of

uninfected HIV-specific CD4+ T cells.

3.1.2 Equation 2

In accordance with (3.0.1a), the first term in (3.0.1b) represents the growth

of infected HIV-specific CD4+ T cells where a3 is the infection rate constant.

Infection is assumed to occur at a rate proportional to the product of the

density of virions and uninfected target cells. The second term represents

the loss or removal of infected HIV-specific CD4+ T cells due to antiviral

effects of HIV-specific CD8+ T cells. The constant b1 is the removal rate.

Removal is assumed to occur at a rate proportional to the product of the

density of infected HIV-specific CD4+ T cells and HIV-specific CD8+ T cells.

These cells are assumed to impose various antiviral effects on infected cells; the

end product being their removal from the system. The third term represents

natural death of infected cells where b2 is the death rate. This death rate is

assumed to be proportional to the density of infected HIV-specific CD4+ T

cells, and is larger than that of the uninfected cells.
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3.1.3 Equation 3

(3.0.1c) is much like (3.0.1a) but comprises only three terms: two to account

for growth and one to account for loss of HIV-specific CD8+ T cells. The first

term in (3.0.1c) represents the influx rate of HIV-specific CD8+ T cells, also

of thymic origin. The second term represents the production of HIV-specific

CD8+ T cells due to antigenic stimulation, where c2 is the proliferation rate

constant. δ represents the saturation rate constant whereby the rate becomes

saturated at high virus concentrations. Proliferation is assumed to occur at

a rate proportional to the product of the density of CD8+ T cells and the

virus at time t, and will only result in a rise in the HIV-specific CD8+ T cell

population up to a certain point. The third term in (3.0.1c) represents the

natural loss of HIV-specific CD8+ T cells where the constant c3 represents the

death rate. Death is proportional to the population of HIV-specific CD8+ T

cells itself.

3.1.4 Equation 4

(3.0.1d) comprises two terms to account for growth and loss of the virus pop-

ulation. The growth term assumes that the production of new virions is de-

pendent on the infected cell population. The rate at which new virions are

produced (enter the system) is proportional to the HIV-specific CD4+ T cell

population in that when an infected HIV-specific cell dies, it releases a num-

ber of new infectious virions into the surrounding environment. However, the

overall production of new virions will be dependent on the total infected cell

population, which is assumed to be proportional to the infected HIV-specific
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CD4+ T cell population at any time t. We can simply multiply the rate at

which plasma virions are produced in the HIV-specific population (b2h) by ρ

to obtain the rate of virions released by the total infected CD4+ T cell popu-

lation. The loss term represents the natural clearance of plasma virions where

g1 is the clearance rate.

Antiretroviral treatment is incorporated into the model in the form of a

single parameter (r) that modifies the production rate of the new virions.

Protease inhibitors greatly decrease the production of new infectious virus by

interfering with the infection process. The more potent or efficient the protease

inhibitor is, which is dependent on dosage and timing, the greater the value of

the parameter r. I assume that the protease inhibitor does not decrease the

rate of viral production by 100% but by approximately 99% (approximately

a 2-log drop in virus load). In chapter 4, I examine the effects of varying the

value of r using bifurcation analysis.

3.2 Assigning values to the parameters

Typically, in a lower order system of equations, the system would be solved

prior to inputting numerical parameter values to obtain general expressions for

the fixed point solutions of the system. These general expressions allow the

stipulation of conditions whereby if a parameter lies in a certain range, then

certain behaviours are elicited by the system. However, in higher order sys-

tems, such as the model system in this thesis, these general expressions can be-

come quite cumbersome making it virtually impossible to stipulate parameter

conditions. This problem is circumvented by inputting numerical parameter
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values reported from the literature into the model equations prior to solving

for fixed points. In doing so, instead of general expressions for fixed points,

numerical values are obtained. Table 3.3 summarizes the selected numerical

parameter values with literature sources.

Table 3.3: Parameter values, units and sources

parameter value units source

a1 10 cells
ul×day

Kirschner & Perelson, 1995

a2 0.05 1

day
Perelson et al., 1999

α 1000 virions
ul

Kirschner, 1996

a3 0.001 ul
virions×day

Kirschner et al., 2000

a4 0.02 1

day
Kirschner & Perelson, 1995

b1 0.05 ul
cells×day

Bonhoeffer et al., 2000

b2 0.5 1

day
Essunger & Perelson, 1994

c1 1 cells
ul×day

Adams et al., 2004

c2 0.05 1

day
Bonhoeffer et al., 2000

c3 0.1 1

day
Bonhoeffer et al., 2000

δ 1000 virions
ul

Kirschner, 1996

g1 13 1

day
Callaway & Perelson, 2002

h 600 virions
CD4 T cell

Essunger & Perelson, 1994

ρ 100 CD4

HIV −specific CD4
Douek et al., 2000

These numerical parameter values are first input into the equations and

then the protocol outlined in Chapter 2 is used to analyze the model system.
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3.3 Omission of the C equation

The best way to determine the effects of explicitly including the C equation

(3.0.1c) in the model is to omit it from the original system and perform an

analysis of the remaining three-dimensional system where the activities of the

CD8+ T cells are implicitly characterized. In doing so, I can test whether

the three-dimensional system, which excludes this equation, yields different

predicted behaviour from the four-dimensional system.

The three-dimensional system is identical to the four-dimensional system

with the exception of the I equation (3.0.1b): it no longer contains a term

that accounts for the loss of infected cells from an extraneous source.

The three-dimensional model is as follows:

dU

dt
= a1 +

a2UV

α + V
− a3UV − a4U (3.3.1a)

dI

dt
= a3UV − b2I (3.3.1b)

dV

dt
=

1

r + 1
b2hρI − g1V, (3.3.1c)

where the parameters are as described in Tables 3.2 and 3.3.

3.3.1 Fixed points and stabilities

The fixed points (U, I, V ) are found by setting the right-hand-sides of equa-

tions (3.3.1) equal to zero and solving the algebraic equations. The numerical

parameter values (Table 3.3) are substituted into the model to obtain the

following three nontrivial fixed points,
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(U, I, V ) = (500, 0, 0), (3.3.2a)

= (0.22,−0.43,−998.94), (3.3.2b)

= (0.22, 20.01, 46182.79). (3.3.2c)

In the absence of treatment, the model predicts the existence of two equilib-

rium states (3.3.2a) and (3.3.2b) associated with viral clearance from the host.

(3.3.2a) shows that the uninfected cell population is healthy but susceptible

to infection. However, the infected cell and virus populations have died out.

Similarly in (3.3.2b), the uninfected cell population is healthy and small, but

the infected cell and virus populations have died out. HIV is never completely

eradicated from the host. Therefore, biologically, these equilibrium points are

unrealistic in that negative values cannot be present. However, fixed point

(3.3.2c) comprises three positive values for U , I and V . This means that the

host is living with the virus. More specifically, the fixed point that corresponds

to this state implies that the host is living with the virus but is not controlling

the virus. This is based on the fact that the viral setpoint is 46182.79. (Refer

to Chapter 1.)

The eigenvalues for fixed points (3.3.2a) and (3.3.2b) are

λ1,2,3 = −0.02, 115.88,−129.38,

and

λ1,2,3 = −89.09, 14.72 + 55.03i, 14.72 − 55.03i,

indicating that (3.3.2a) is an unstable saddle point and (3.3.2b) is an unstable

spiral saddle point. This is due to the positive real-valued components of each
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set of eigenvalues. The third fixed point (3.3.2c) is stable by its eigenvalues

λ1,2,3 = −46.35,−0.51,−12.80.

This is due to the negative real-valued eigenvalues.

Thus, for the chosen parameter set, the three-dimensional model system

predicts the existence of three fixed points: two of which are unstable and one

of which is stable and biologically relevant. Based on numerical simulations, no

other stable phenomena were observed. The remainder of this section focuses

solely on the stable fixed point (3.3.2c) since the system moves from an initial

state (U0, I0, V0) toward the stable fixed point and away from the other fixed

points based on these simulations.

3.3.2 Location and nature of fixed point

The location and stability of the stable fixed point in three-dimensional space

can be illustrated by generating a three-dimensional phase diagram as shown

in Figure 3.1. To reiterate, the fixed point is

(U, I, V ) = (0.22, 20.01, 46182.79)

and has eigenvalues

λ1,2,3 = −46.35,−0.51,−12.80.

The eigenvalues tell us not only about the stability of the fixed point, but

the nature. Since the eigenvalues comprise three real-valued components, the

fixed point is a node. In Figure 3.1, three orbits are shown originating from

three different, randomly selected initial conditions (U0, I0, V0) = (1, 5, 50),
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(5, 1, 50) and (1, 1, 50). All three orbits head toward the stable fixed point

(U, I, V ) = (0.22, 20.01, 46182.79) in phase space.
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(a) U − I − V -plane

Figure 3.1: Phase diagram in the U − I − V -plane with initial conditions

(U0, I0, V0) = (1, 5, 50), (5, 1, 50), (1, 1, 50)

3.4 Solving the system

The fixed point can be visualized in another way. The system can be solved and

the variable solutions plotted against time in a time series plot. This is a useful

graphical method in that it can be used to predict how each variable trajectory

approaches the fixed point or equilibrium state and how much time this takes.
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The equilibrium state corresponds to the fixed point with coordinates (U, I, V ).

The acute phase of infection is generally marked by transient rapid changes

in immune cell and virus populations as the variable populations approach the

equilibrium state. The chronic phase of infection is marked by the arrival

at the equilibrium state. Once the equilibrium state is reached, the variable

populations (as a system) stay there unless an external influence, such as

treatment, displaces them or the individual moves out of the chronic phase

and into AIDS. The model does not attempt to predict the transition to an

AIDS state. Since I am interested in the dynamical interactions during the

chronic phase of infection and am investigating the changes in the variables

during treatment interruption, it is not noteworthy that the model does not

predict an AIDS state. This is discussed further in Chapter 6. As described

in the previous section, perturbation of the equilibrium state with treatment

does not cause the system to switch to another equilibrium state: it returns

to the original one. This is because there is only one stable equilibrium state

predicted by the model for the chosen parameter set. For each two-dimensional

time-series plot, the x-axis is the time (days), and the y-axis is the number

of T cells in each respective T cell population and the virus load at time t.

The paths traced out by the variable trajectories are analogous to HIV disease

progression. When the trajectories plateau, they have reached the equilibrium

state.

To plot the solutions, the parameter set (Table 3.3) and a set of initial

conditions are required as input into the system of equations. I chose the

initial condition (U0, I0, V0) = (1, 1, 50) as it was used previously as an initial

condition for the phase diagram (Figure 3.1).
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Figure 3.2 is the time series plot of the numerical solutions with r = 0. All

variables are plotted on a logarithmic scale due to the fact that the virus exists

at high numbers. The uninfected cell population is seen in red, the infected

cell population in blue and the virus population in green.
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(a) (0.22, 20.02, 46182.79) → (−0.66, 1.30, 4.66)

Figure 3.2: Time (days) series plot of U , I and V when r = 0 showing fixed

point (linear and log scales)

Figure 3.2 shows that the dynamics are very fast. The equilibrium state

is attained very early in disease progression. According to the system solu-
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tions, the virus population (V ) immediately begins to grow directly to reach

a high off-treatment equilibrium level (setpoint) (V = 4.66). Subsequently,

the uninfected HIV-specific CD4+ T cell population grows due to antigenic

stimulation and subsequently decays due to infection by the virus. The in-

fected HIV-specific CD4+ T cell population grows slowly as the uninfected

cell population decays until both populations reach the equilibrium state. Af-

ter approximately 8 days, all three populations have reached the equilibrium

state. No oscillations are predicted.

Clinical trends in changing T cell counts and virus loads in early infection

are in agreement with this result. However, in a clinical setting the equilibrium

state never occurs as early as 8 days post-infection. It usually takes up to

one year for an individual to reach this state and enter the chronic phase of

infection. I address this in Chapter 4.

3.4.1 Fixed points and stability with treatment

Now that it is known how the system behaves off-treatment, I want to know

how it behaves on-treatment. This is done by direct inspection of fixed points

and eigenvalues generated for progressively higher parameter values and also

using bifurcation analysis. Changing the value of r is analogous to examining

the effects of changing the dosage or potency of treatment. How well treatment

lowers the viral setpoint (V ) will depend on how much it reduces the viral

production rate.

For each value of r, there is one corresponding stable fixed point. Ulti-

mately, I set a value for the treatment parameter r based on the how effec-

tively it reduces the viral production rate to lower the viral setpoint to an
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undetectable level. I am aiming to use a value of r that reduces the viral

setpoint to one percent of its non-treatment value (“a 2-log drop”), as this is

how treatment efficacy is measured. By clinical standards, a viral load of less

than 50 HIV RNA copies per cubic ml plasma or a viral load of less than 398

HIV RNA copies per cubic ml plasma are considered undetectable, depending

on the sensitivity of the RNA detection assay used. This will be reflected in

the value obtained for V in the fixed point.

Table 3.4 shows the respective changes in each of U , I and V as the treat-

ment parameter r is assigned progressively higher values. Also shown are the

changes in eigenvalues and stabilities of each fixed point.

Table 3.4: The effects of assigning sequentially higher values to r

r U I V eigenvalues stability

0 0.22 20.02 46182.79 -46.35,-0.51,-12.80 S

100 21.88 19.81 452.55 -0.22+0.04i,-0.22-0.04i,-13.52 S

500 108.55 16.42 75.64 -0.04+0.18i,-0.04-0.18i,-13.50 S

1000 216.88 11.90 27.44 -0.02+0.11i,-0.02-0.11i,-13.50 S

1500 325.22 7.35 11.31 -0.02+0.07i,-0.02-0.07i,-13.50 S

2000 433.55 2.80 3.23 -0.01+0.04i,-0.01-0.04i,-13.50 S

2200 476.88 0.94 1.02 -0.01+0.02i,-0.01-0.02i,-13.50 S

2307 500 0 0 -0.02,-0.000064,-13.50 S

For progressively higher values of r, there are more uninfected cells at

equilibrium as indicated by the changes in the value of U . For progressively

higher values of r, there are fewer infected cells and lower viral setpoints at

equilibrium as indicated by changes in the values of I and V .
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The eigenvalues associated with each fixed point change accordingly as the

value of r is varied. When r = 0, they indicate that the fixed point is a sta-

ble node, as previously established. For values of r = 100 to r = 2000, the

eigenvalues comprise both (negative) real-valued and complex parts indicat-

ing that the corresponding fixed points are asymptotically stable spiral node

points. Eigenvalues with complex parts cause oscillatory effects in the system

as illustrated in Figure 3.3. When the value of r is increased to r = 2307,

the eigenvalues contain a near zero value indicating a switch in stability at

this point. I discuss the switch of stability in the system when the bifurca-

tion analysis is done in subsection 3.4.3. The changes in eigenvalues and the

induction of oscillations can be visualized by plotting the system solutions for

various values of r in time series plots.

3.4.2 Solving the system with treatment

Figure 3.3 illustrates the effects on the solutions when the value of r is assigned

progressively higher values. Since treatment regimens can be initiated at any

time point post-infection (usually following acute phase resolution), treatment

is initiated on day 30.

Figure 3.3 shows that for progressively higher r values, the viral produc-

tion rate progressively decreases to reflect progressively ‘preferable’ fixed point

values which are analogous to disease equilibrium states. Treatment induces

damped oscillations in all cases indicating transient instability in the system.

In general, as the value of r is increased, the uninfected cell population grows

to successively higher peak values, and the infected cell and virus populations

decay to successively lower trough values. In addition, the oscillations increase
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Figure 3.3: Time (days) series plots for U , I, V (linear and log scales) for

progressively higher values of r
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in period and amplitude as the value of r is increased, and are not sustained.

Thus, the higher the value of r, the longer it takes for the system to reach the

equilibrium state. According to Table 3.4 and Figure 3.3, a value of r = 100

reduces the virus load by 2-logarithms. This is equivalent to a 99% reduction

in the viral production rate.

Figure 3.3(d) demonstrates that as the value of r increases, I and V decay

to reach such low levels that they almost become extinct. This is indicated by

the roughness in the variable trajectories that trough around day 250. This

roughness is attributable to the fact that the values for I and V during this

period are minute. Importantly, this activity also indicates that there exists a

critical value of r whereby if its value surpasses some critical value, the I and

V populations will become extinct. This can be confirmed using bifurcation

theory.

As far as visualizing system changes as the parameter r is varied, time series

plots are useful in determing time-associated changes in the system. However,

a more complete way to visualize the changes in the behaviour of the system

as the parameter r is varied is to use bifurcation diagrams.

3.4.3 Bifurcation analysis

Figures 3.4(a), (b) and (c) show how U , I and V change as the parameter r is

varied, respectively. Each diagram shows the respective fixed point value at a

particular value of r.

Figure 3.4 confirms that the fixed points are stable for a large range of r

values. At values of r < 2307, the fixed points are stable with positive coordi-

nates. The value of r is directly related to U and indirectly related to I and
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Figure 3.4: Bifurcation diagrams showing changes in U , I and V as r is varied.
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V : large r corresponds to large U and small I and V . A transcritical bifurca-

tion occurs at r = 2307. At the bifurcation point, the fixed points exchange

stability where the original stable fixed point solution with positive fixed point

coordinates becomes unstable, and the unstable fixed point (3.3.2a) becomes

stable. This fixed point (U, I, V ) = (500, 0, 0) remains stable for all values

r ≥ 2307. When r = 2307, the viral production rate is reduced by 99.96%.

This means that treatment drives the infected cell and virus populations to

extinction when it reduces the viral production rate by at least 99.96%.

At these high treatment efficacies where the virus production rate is re-

duced by at least 99.96%, the turnover rate of the virus is modified such that

the loss rates of virus from the system exceed the production rate. Since treat-

ment reduces the production rate of the virus in the model, it makes sense that

increasing the effectiveness of treatment to a point below 100% will reduce the

viral production rate below the virus removal rates to result in the virus-free

equilibrium: a 0% production rate is not required to bring the bring the virus

population to 0 as long as the overall loss of virus from the system is greater

than the gain.

The fact that this can theoretically happen does not mean that it does in

reality. In fact, in reality, protease inhibitors do not act to reduce the viral

production rate by virtually 100% (99.96%) but by approximately 99%. The

model simply predicts that if drugs were in fact efficient enough to reduce

the viral production rate by virtually 100% (99.96%), then the virus would be

eradicated from the system because the loss rates of the virus would exceed

the production rate.

Studies show that this prediction can be clinically confirmed. CD4+ T cell
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depletion has been suggested as a way to eliminate the virus from the system

[Tepic, 2004]. By suddenly removing (surgically depleting) a fraction of CD4+

T cells, the system is perturbed such that the removal rate or death rate of the

CD4+ T cells changes to increase past some critical value [DeBoer & Boucher,

1996]. Thus, the rate at which CD4+ T cells die is altered (increased) to reduce

the susceptible pool of cells to allow the system to clear the virus.

Therefore, even though the model allows for the theoretical existence of a

virus-free equilibrium state induced by treatment, this state is never attained

in reality because treatment is never this efficient.

Bifurcation analysis confirms the existence of a disease equilibrium state

whereby the equilibrium virus load successively decreases as the efficacy of

treatment is increased. It also confirms the existence of a virus-free equilibrium

at near 100% treatment efficacy. Since the disease equilibrium state can be

perturbed using any given treatment efficacy (r), a value of r = 100 is selected

to test treatment interruption regimens because it mimics the effects of efficient

protease inhibitors when input into the model. That is, it reduces the viral

setpoint by 2-logs.

3.4.4 Treatment interruption

According to Table 3.4, when the treatment parameter has a value of r = 100,

the viral setpoint is reduced by 2-logs to a low detectable level (V = 452.55)

by clinical standards by reducing the viral production rate by 99%. The fixed

point associated with the treatment parameter with value r = 100 is

(U, I, V ) = (21.88, 19.81, 452.55),
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and it is stable. See Table 3.4.

To demonstrate the effects of treatment interruption, the system is solved

while intermittantly assigning treatment parameter values r = 0 (off-treatment)

and r = 100 (on-treatment) using a piecewise linear function. The solutions

are then plotted in a time series plot as before.
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Figure 3.5: Time (days) series plots for U , I and V showing three treatment

interruption regimens with (U, I, V ) = (0.22, 20.01, 46182.79)

Figure 3.5 shows the time series plots for three different treatment inter-

ruption regimens. In all cases, treatment is initiated 30 days post-infection.

The first regimen is a 30 day-off, 30 day-on, off regimen. The second is a 30

day-off, 30 day-on, 30 day-off, 30 day-on, off regimen and the third is a 30 day-

off, 60 day-on, 40 day-off, 70 day-on, off regimen. The aim in selecting these

three regimens is to demonstrate the effects of a single interruption, multiple

interruptions and interruptions of different durations. Figure 3.5(a) shows a
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30 day off-treatment period followed directly by a 30-day on-treatment period

which is subsequently interrupted indefinitely. Following the perturbation of

the system with a single treatment phase (30 days), the system returns to

its original pre-treatment equilibrium state. Figure 3.5(b) shows that follow-

ing two perturbations with treatment the system again returns to its original

pre-treatment equilibrium state. The behaviours of the variable trajectories

are identical for both treatment interruption regimens in 3.5(a) and (b). The

uninfected cell population grows and the infected cell and virus populations

decay when treatment is on. But, the number of interruptions does not appear

to affect the end result which is the arrival at the pre-treatment equilibrium

state. To determine whether durations of treatment or interruption phases

would cause the same result, we modified both as seen in Figure 3.5(c). Even

when the durations of the on-treatment and off-treatment phases are modified,

the outcome is the same as for the other regimens: the system returns to its

original pre-treatment state. The only time the system does not return to this

state is when treatment is kept on as seen in Figure 3.6. In this case, the

system returns to the original on-treatment equilibrium state. The conclusion

is the same: whether treatment is kept on or taken off, what happens in the

interim in a treatment interruption regimen does not affect the re-arrival at

either the off or on-treatment equilibrium states. This was a predictable result

in that there is only single stable fixed point: only one place to go.

In summary, the three-dimensional model predicts that following a very

short acute phase, the system solutions reach an equilibrium state. The fixed
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Figure 3.6: Time (days) series plots for U , I and V showing three treatment

interruption regimens with (U, I, V ) = (21.88, 19.81, 452.55)

point values that correspond to the equilibrium state reflect a lack of control

of virus in that the viral setpoint is 4.66. The fixed point coordinates U

and I indicate that there are almost no uninfected HIV-specific CD4+ T cells

and many times more infected cells than uninfected cells. Treatment acts

to lower the viral setpoint when the treatment parameter has value in the

range 0 < r < 2307 and eliminates the virus when it is equal to or exceeds a

value of r = 2307. When we fix the value of r at r = 100, it decreases the

viral production rate by 99%, subsequently lowering the viral setpoint by 99%.

Treatment transiently delays disease progression and increases the uninfected

cell population while decreasing the infected cell and virus populations. If

treatment is kept on, the model predicts that an individual can indefinitely

maintain an undetectable viral setpoint and a hearty HIV-specific CD4+ T

cell count. One of the most important findings is that treatment interruptions

do not work to lower the viral setpoint. Unless treatment is re-initiated and
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kept on following a treatment interruption, the off-treatment equilibrium state

reappears, according to three-dimensional model predictions.

Now that the system behaviour without the C equation is known, the be-

haviour of the complete four-dimensional system can be examined following

the same protocol. With the inclusion of C as a variable, which again repre-

sents the HIV-specific CD8+ T cell population, I will be able to investigate

how the HIV-specific CD8+ T cell population changes in the context of treat-

ment interruptions. I will therefore be able to confirm whether treatment

interruptions can be used to boost these responses during the off-treatment

phases.



Chapter 4

The model

The four-dimensional model is as follows:

dU

dt
= a1 +

a2UV

α + V
− a3UV − a4U (4.0.1a)

dI

dt
= a3UV − b1IC − b2I (4.0.1b)

dC

dt
= c1 +

c2CV

δ + V
− c3C (4.0.1c)

dV

dt
=

1

r + 1
b2hρI − g1V. (4.0.1d)

4.1 Fixed points and stabilities

The fixed points (U, I, C, V ) are found by setting the right-hand-sides of the

equations (4.0.1) equal to zero and solving the resultant algebraic equations.

The numerical parameter values from Table 3.3 were substituted into the equa-

tions to obtain the following four fixed points,

60
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(U, I, C, V ) = (500, 0, 10, 0), (4.1.1a)

= (0.22,−0.43, 0.02,−998.94), (4.1.1b)

= (−4.98,−0.83,−239.94,−1923.06), (4.1.1c)

= (0.63, 6.93, 18.89, 16003.28). (4.1.1d)

The four-dimensional model predicts the existence of two equilibrium states

(4.1.1a) and (4.1.1b) associated with viral clearance from the host and an

equilibrium state (4.4.1c) associated with the death of the host. The model

also predicts an equilibrium state (4.1.1d) where the host is living with the

virus. The fixed point that corresponds to this state comprises four positive

coordinates (U , I, C, V ) whereby the host is controlling the virus reasonably

well. This is based on the fact that the viral setpoint is 16003.28. (Refer to

Chapter 1.)

The eigenvalues for fixed points (4.1.1a), (4.1.1b) and (4.1.1c) are

λ1,2,3,4 = −0.02,−0.10, 115.62,−129.62,

λ1,2,3,4 = 14.70 + 54.96i, 14.70− 54.96i,−88.95,−47.14,

and

λ1,2,3,4 = 3.51 + 5.58i, 3.51 − 5.58i,−6.63, 0.13

indicating that each of these fixed points is unstable where (4.1.1a) is an un-

stable saddle point and (4.1.1b) and (4.4.1c) are unstable spiral saddle points.

However, the fourth fixed point (4.1.1d) is stable by its eigenvalues

λ1,2,3,4 = −19.24,−9.55,−1.63,−0.05,
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which indicate that it is a stable node.

Thus, the four-dimensional model predicts the existence of four equilibrium

states; three of which are unstable and one of which is stable and biologically

relevant. The fact that there are negative values in fixed points (4.1.1a) and

(4.1.1b) implies a non-realisitic state in that HIV is never entirely cleared from

the host. This is not a problem since these fixed points are unstable.

The remainder of this section focuses on the stable fixed point (4.0.1d)

since the system moves from an initial state (U0, I0, C0, V0) toward the stable

fixed point and away from the unstable fixed points. Although global stability

of the stable fixed point has not been demonstrated, numerical simulations

have not demonstrated the existence of more complicated behaviour.

4.1.1 Quantitative comparison of fixed points with and

without C equation

Recall that the stable fixed point coordinates for U , I, (C) and V in the three

and four-dimensional systems are

(U, I, V ) = (0.22, 20.01, 46182.79)

and

(U, I, C, V ) = (0.63, 6.93, 18.89, 16003.28),

respectively. It appears upon direct inspection of the fixed point values that it

is “preferable” to explicitly include the C equation in the system as it appears

to subject “positive pressure” on the system: it decreases the viral setpoint

(V ) and the infected cell population at equilibrium (I) and increases the un-

infected cell population at equilibrium (U). (An HIV-infected individual with
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a virus load of 4.2 would be considered to be controlling the virus better than

an individual with a virus load of 4.66.) Specifically, when the C equation is

explicitly included in the model there is a larger predicted population of un-

infected cells (three times as large), a smaller predicted population of infected

cells (three times as small) and a smaller predicted virus population (three

times as small) at off-treatment equilibrium. Therefore, the explicit inclusion

of the C equation as a variable in the system renders the fixed point solution

more desirable and also realistic because HIV-specific CD8+ T cells in fact do

impose antiviral pressure on the virus to reduce the virus load. I make further

comparisons between the three and four-dimensional systems upon further

analysis of the four-dimensional system.

As previously discussed, phase diagrams are useful for visualizing the loca-

tions and stabilities of stable fixed points. Figure 4.1 shows the location and

stability of the stable fixed point

(U, I, C, V ) = (0.63, 6.93, 18.89, 16003.28)

in three-dimensional phase space. To reiterate, its eigenvalues are

λ1,2,3,4 = −19.24,−9.55,−1.63,−0.05

and tell us that this fixed point is a stable node, as depicted in the phase

diagram.

Each of the three orbits originate from an initial condition (U0, I0, C0, V0)

and traces out a distinct path in phase space to eventually arrive at the stable

fixed point. The initial conditions were randomly selected to represent the

number of T cells and amount of virus that an HIV-infected individual starts

off with. The fact that we can randomly assign initial conditions means that



CHAPTER 4. THE MODEL 64

0.0

0.0

0 2.5

5

2.5

10

15

5.0

5.0

20

v(t)

c(t)

25

7.5

30

u(t)7.5

35

10.0
10.0

12.5
15.0

12.5

(a) U − C − V space

12.515.0

0

10.0

5

10

12.5

15

20

v(t)

7.5

25

10.0

u(t)

30

35

i(t)

7.5 5.05.0
2.52.5

0.00.0

(b) U − I − V space

Figure 4.1: Phase diagram from two perspectives with initial conditions

(U0, I0, C0, V0) = (1, 1, 1, 50), (5, 0, 8, 1), (1, 0, 8, 50)

an infected individual can start off with any number of HIV-specific T cells

(CD4+ or CD8+) and virus and will end up at this equilibrium state. This

result will further be discussed in Chapter 7.

4.2 Solving the system

Now that we know the location of the fixed point in phase space, we want to

know when the fixed point solution (equilibrium state) is reached with respect

to time. We solve the system and plot a time series graph of the variable

solutions using the parameter set from Table 3.3 and the initial condition

(U0, I0, C0, V0) = (1, 1, 1, 50). All variable populations are plotted on a loga-
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rithmic scale. The uninfected cell population is seen in red, the infected cell

population in blue, the HIV-specific CD8+ T cell population is seen in cyan

and the virus population is seen in green.
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Figure 4.2: Time (days) series plot of U , I, C and V (linear scale) (r = 0)

The variable trajectories follow similar patterns as for the three-dimensional

system in that the populations reach the equilibrium state following a concomi-

tant rise of virus, uninfected and infected T cell populations, and subsequent

decay of the uninfected T cell population, as seen in Figure 4.2. In general,

the populations change very quickly and immediately during the acute phase

of infection. Just three hours post-infection, three of the four variable popula-

tions (U , I and V ) have changed dramatically to reach peak or trough values.
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See Figure 4.3 for details of blow-up of time axis.
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Figure 4.3: Blow-up of time series plot of U , I, C and V (linear scale) (r = 0)

The virus population grows immediately following entry into the system.

The uninfected HIV-specific CD4+ T cell population grows for a brief period

in response to the growing virus population. Because these cells are suscep-

tible to infection, this population eventually decays quickly as they become

infected. This decay is accompanied by growth of the infected HIV-specific

CD4+ T cell population. This is an expected result in that the cells that be-

come infected originate from the uninfected cell pool. The HIV-specific CD8+

T cell population grows more gradually as compared with the other three pop-

ulations. It does not respond as quickly or dramatically to the presence of the
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virus in the first few hours of infection. As the infection progresses past day

1, each variable population changes more slowly. (Refer to Figure 4.2.) As

a result of the expanding HIV-specific CD8+ T cell population and the lack

of susceptible uninfected cells, the virus population continues to decay which

in turn spurs the decay of the infected cell population and re-establishment

of a small uninfected cell population. After approximately 80 days, all four

populations have reached the equilibrium state as seen in Figure 4.2.

4.2.1 Comparison of time series plots for three and four-

dimensional systems

If we compare the three and four-dimensional times series plots (Figure 4.4)

we can see that it takes a longer period of time for all populations to reach

the equilibrium state when C is explicitly included in the system as a variable

(Figure 4.4b).

This result also lends to the realism of the four-dimensional system. It is a

more realistic portrayal of the chronology of the progression through the acute

and chronic phases of infection.

It is important to bear in mind that the model describes the activities of

HIV-specific T cell populations, therefore it is possible that the rapid pro-

gression to the equilibrium state is characteristic of the specific interactions

between HIV-specific populations and HIV. The infection rate of HIV-specific

T cells is the highest found reported value (a3 = 0.001) to account for the fact

that these cells are preferentially infected and depleted. Also, the dynamics are
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Figure 4.4: Time (days) series plots comparing the three and four-dimensional

system solutions (linear scale) (r = 0).

faster than they are for total T cell populations in that these antigen-specific

populations respond immunologically to the virus.

4.3 Fixed points and stability with treatment

In order to assess and validate the effects of treatment on the four-dimensional

system, we assign progressively higher values to the control parameter r and

examine the changes in fixed points and eigenvalues. Table 4.1 shows the

respective changes in each of U , I, C and V as the treatment parameter r

is assigned progressively higher values. The eigenvalues for each set of fixed

points change accordingly and reveal the stabilities of the fixed points.
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Table 4.1: The effects of assigning sequentially higher values to r

r U I C V eigenvalues stability

0 0.63 6.93 18.89 16003.28 -19.24,-9.55,-1.63,-0.05 S

100 45.81 9.05 10.94 206.83 -14.06,-0.10+0.43i,-0.10-0.43i,-0.09 S

500 218.55 5.88 10.13 27.07 -14.01,-0.02+0.16i,-0.02-0.16i,-0.10 S

800 347.89 3.19 10.05 9.20 -14.00,-0.01+0.09i,-0.01-0.09i,-0.10 S

1000 434.11 1.39 10.02 3.19 -14.00,-0.01+0.05i,-0.01-0.05i,-0.10 S

1153 500.07 -0.0014 10.00 -0.0028 -14.00,-0.03,0.00012,-0.10 S

For progressively higher values of r, there are more uninfected cells at

equilibrium, as indicated by changes in the value of U and progressively fewer

infected cells and virus at equilibrium, as indicated by changes in the values

of I and V . The number of HIV-specific CD8+ T cells at equilibrium changes

as the value of r is increased from 0 to 100, as indicated by the change in the

value of C. But for values of r when 100 < r < 1000, C does not change

considerably. Even when the value r is increased from 1000 to 1153, causing

the infected cell and virus populations to become extinct, C does not change

much. This implies that C is less sensitive to changes not only in r, but to

subsequent changes in the other variables. HIV-specific CD8+ T cells typically

respond quickly to changes in virus load, but these changes can vary among

HIV-infected individuals depending on the quality of the HIV-specific CD8+

T cells that respond. This result will further be discussed in section 4.4.1 and

Chapters 6 and 7.

The eigenvalues associated with each fixed point change accordingly as the
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value of r is varied. For 0 < r < 100, the corresponding fixed points are stable

nodes as indicated by the negative real-valued eigenvalues. For 100 < r <

1000, the eigenvalues comprise both (negative) real-valued and complex parts

indicating that the corresponding fixed points are asymptotically stable spiral

node points. Eigenvalues with complex parts cause oscillatory effects in the

system. When the value of r is increased to r = 1153, the eigenvalues contain

a near zero value indicating a switch in stability of the system. I discuss the

switch of stability in the system when the bifurcation analysis is done in the

following subsection (4.3.1).

We can examine the behaviours of the variables as they change with respect

to time at any stage of disease progression (not just at the equilibrium state)

by generating time series plots. The plots confirm the induction of unsustained

oscillations as the value of r is varied.

Figure 4.5 illustrates the effects on the system solutions as r is assigned

progressively higher values. Treatment is initiated post-resolution of acute

infection (day 100). As the value of r is increased, the corresponding fixed

points reflect preferable disease equilibrium states as indicated by the fixed

point values. Treatment (r > 0) induces unsustained oscillations in all cases.

In general, as the value of r is increased, the uninfected cell population grows

to successively higher peak values, and the infected cell and virus populations

decay to successively lower trough values. In addition, the oscillations increase

in period and amplitude as the value of r is increased. Thus the higher the

value of r, the longer it takes for the system to reach the equilibrium states

with corresponding successively lower viral setpoints. These results confirm

that the actions of the treatment parameter on the system realistically mimics
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the actions of protease inhibitors on the virus.

To better visualize long-term system changes as the parameter r is varied,

we generate bifurcation diagrams. Again, this provides a complete picture of

all possible states of the system for a large range of r values.

4.3.1 Bifurcation analysis - varying r

Figure 4.6 shows how U , I, C and V change as the parameter r is varied, and

confirms that the fixed points are stable for a large range of r values. When

0 < r < 1153, the fixed points are stable and positive.

There is a direct relationship between r and U and an indirect relationship

between r and I and V : large r corresponds to large U and small I, C and V .

A transcritical bifurcation occurs at r = 1153 as seen more clearly in Figure

4.7.

At the bifurcation point, the system undergoes an exchange of stability.

The original stable fixed point solution with positive coordinates becomes un-

stable and the unstable fixed point (4.4.1a) with U > 0 and C > 0 and

I = 0 and V = 0 becomes stable at the bifurcation point. The fixed point

(U, I, C, V ) = (500, 0, 10, 0) remains stable for all r ≥ 1153. When r = 1153,

the viral production rate is reduced by 99.91%. This means that treatment

drives the infected cell and virus populations to extinction when it reduces the

viral production rate by at least 99.91%. Thus, for very high treatment effica-

cies (virus production rate reduced by at least 99.91%), the model predicts the

existence of a virus-free equilibrium state. As previously described in section

3.4.3, this prediction is theoretical. Treatment will never be this efficient in

reality, and if it was, it would probably kill the patient due to high toxicity.
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Figure 4.6: Bifurcation diagrams of U , I, C and V perspectives showing tran-

scritical bifurcation at r = 1153.

The model simply predicts that if treatment does reduce the viral production

rate below some threshold, the virus is eliminated from the system based on

the fact that the death rates are higher than the production rates at these

high treatment values.

Thus, bifurcation diagrams confirm analytical findings that demonstrate

an inverse relationship between r and V , and shows that there is an exchange

of stability at the bifurcation value r = 1153. Treatment must reduce the viral

production rate by more than 99.9% in order for this switch to occur, but we

do not need 0% production to eradicate the virus as long as the loss rates

exceed the production rate.

By comparing the bifurcation diagrams for the three and four-dimensional

systems as the treatment parameter r is varied (Figure 4.8), we can see that

the bifurcation value for the three-dimensional system occurs at a larger value

for r. To reiterate, a transcritical bifurcation occurs at r = 2307 in the three-

dimensional system and at r = 1153 in the four-dimensional system.
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Figure 4.7: Bifurcation diagram - changes in V as r is varied. A transcritical

bifurcation occurs at r = 1153.

This means that when C is explicitly included in the model as a variable,

the treatment parameter does not need to be as large as it does when it is

excluded to impose the same effects on the system. Therefore, bifurcation

diagrams confirm that the explicit inclusion of C imposes pressure on the

system whereby treatment need not be as potent to suppress the virus to

undetectable levels (lower viral setpoint V ). This result is promising with

respect to the predicted virus-free equilibrium state. The fact that treatment

induces a virus-free equilibrium state by reducing the viral production rate less

than it is reduced in the three-dimensional model when an additional variable

that removes the virus from the system is explicitly included supports the fact

that the model is portraying a valid picture of the effects of treatment. The

number of ways for the virus to be removed from the system is larger and thus
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Figure 4.8: Comparison of bifurcation diagrams for three and four-dimensional

systems - changes in V as r is varied.

the production rate of virus does not need to be reduced as much for this rate

to be less than the death (virus removal) rates.

4.4 Treatment interruption

To examine the effects of treatment interruption on the system solutions we

need to fix the value of r where r > 0. We select a value that is not too

close to the bifurcation value and that reduces V to an undetectable level.

According to Table 4.1 and Figure 4.5, when the treatment parameter has

a value of r = 100, the viral setpoint is reduced to what is considered an

undetectable level (V =206.83) by clinical standards (based on the less sensitive

RNA detection assay) by reducing the viral production rate by 98.7%. To
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reiterate, the stable fixed point associated with the treatment parameter when

r = 100 is

(U, I, C, V ) = (45.81, 9.05, 10.94, 206.83)

with eigenvalues

λ1,2,3,4 = −14.06,−0.10 + 0.43i,−0.10 − 0.43i,−0.09.

Figure 4.9 is the phase diagram when r = 100 and confirms the location and

stability of the stable fixed point. The fixed point is an asymptotically stable

spiral node. Recall that the time series plot for r = 100 revealed the induction

of oscillations. These oscillations are analogous to the spiralling effect in the

phase diagram and are predictable by the natures of the eigenvalues.

To demonstrate the effects of treatment interruption using time series plots,

we solve the system by intermittantly assigning treatment parameter values

r = 0 (off-treatment) and r = 100 (on-treatment) using a piecewise linear

function.

Figure 4.10 shows the time series plots for three different treatment inter-

ruption regimens. In all cases, treatment is initiated 100 days post-infection.

The first regimen is a 100 day-off, 100 day-on, off regimen. The second is a

100 day-off, 100 day-on, 100 day-off, 100 day-on, off regimen, and the third is

a 100 day-off, 100 day-on, 200 day-off, 90 day-on, off regimen. Figure 4.10(a)

shows that when treatment is withdrawn after 100 days, the variable trajecto-

ries return to the pre-treatment equilibrium state. This means that following

a perturbation of the system with a single treatment phase (100 days), the

system returns to its original pre-treatment state. Figure 4.10(b) shows that

following two perturbations with treatment, the system returns to its original
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pre-treatment equilibrium state. The behaviours of the variable trajectories in

the on phases are identical for both cases (a) and (b). Even when the durations

of the on-treatment and off-treatment phases are modified, as seen in Figure

4.10(c), the outcome is the same as for the other regimens: the system returns

to its original pre-treatment equilibrium state. The only time the system does

not return to this state is when treatment is kept on as seen in Figure 4.11.

In this case, the system returns to the original on-treatment (post-treatment)

equilibrium state. The conclusion is the same: whether treatment is kept on or

taken off, the timing and duration of a treatment regimen does not affect the

re-arrival at either the post or pre-treatment equilibrium states, respectively.

Figures 4.10 and 4.11 demonstrate that treatment can be used to delay
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Figure 4.10: Time (days) series plots showing three different treatment inter-

ruption regimens: (U, I, C, V ) = (0.63, 6.93, 18.89, 16003.28)

the onset of the pre-treatment (off-treatment) equilibrium. Theoretically, it

appears possible to interrupt treatment at any time during infection and as

often as desired. However, as innocuous as interrupting treatment may seem

from these model predictions, in reality, it is most likely not due to a number

of factors such as high rate of viral mutation, that are beyond the scope of the

model.

If we examine the effects of interrupting treatment more closely, we see

that immediately following the interruption, the HIV-specific CD8+ T cell

population grows as seen in Figure 4.12(a). Interrupting treatment does result

in a transient boost in HIV-specific CD8+ T cells, but this boost does not

translate into a lower viral setpoint (Figure 4.12(b)).

This result is based on model predictions using a particular parameter set.

This raises an important point: not everyone will have the same set.
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ruption regimens: (U, I, C, V ) = (218.55, 5.88, 10.13, 27.07)

4.4.1 Bifurcations - modifying b1 on and off-treatment

The parameter b1 represents the removal rate of infected HIV-specific CD4+

T cells by the HIV-specific CD8+ T cells. This rate is determined by the

efficiency of the HIV-specific CD8+ T cells to remove infected cells from the

system. Immunologically, HIV-specific CD8+ T cells that are functionally

impaired may be less efficient at removing infected cells. Studies have shown

that the reason for CTL exhaustion, resulting in faster disease progression as

determined by the rates at which U and V change and the values of U and V , is

a defect in the maturation process of these cells into terminally-differentiated

effector memory cells [Appay et al., 2000; Champagne et al., 2001; Hess et

al., 2004]. Thus, if the HIV-specific CD8+ T cells are functionally impaired,

the removal rate of HIV-infected cells will be slower implying faster disease
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Figure 4.12: Expanded time (days) series plot immediately following treatment

interruption

progression as determined by U and V . We can examine all possible long-

term behaviours of the system as we vary the removal rate parameter b1 using

bifurcation analysis.

Figure 4.13 shows that the fixed points are stable for a large range of b1

values. When 0 < b1 < 115.3, the fixed points are stable and positive. The

value of b1 is directly related to the value of U and indirectly related to the

values of I, C and V : larger b1 values correspond to larger values of U and

smaller values of I, C and V . A transcritical bifurcation occurs at b1 = 115.3

where the fixed point (U, I, C, V ) = (500, 0, 10, 0) becomes stable. This implies
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Figure 4.13: Bifurcation diagrams describing how U , I, C and V change as b1

is varied (r = 0).

that when b1 = 115.3, the infected cell and virus populations are extinct. The

exchange of stability occurs where the fixed point at V = 0 becomes stable

where V coordinate of the original fixed point solution becomes unstable and

negative. When b1 > 115.3, the fixed points that have positive values are

unstable. Thus, the model predicts a virus-free equilibrium state when b1 is

very high. It is unlikely based on parameter estimates from the literature that

the removal rate parameter would ever have a value this high. Nonetheless,

the model predicts that increasing efficacy of removal of infected cells from the

system by the HIV-specific CD8+ T cells is associated with equilibrium states

whereby the values of I, C and V become successively lower and the value of

U becomes successively higher. This result is in accordance with the known

effects of these cells and also the impact of the virus on these cells throughout

immunopathogenesis.

Every value of b1 in the range 0 < b1 < 115.3 elicits stability in the system
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whereby the stable fixed points have positive-valued coordinates. Thus, for

successively higher values of b1, the host is living with the virus and controlling

the virus with increasing efficiency. For example, an individual with a removal

rate of b1 = 0.05 yields a viral setpoint of 4.2, whereby an individual with a

removal rate of b1 = 0.0005 yields a viral setpoint value of 4.66.

We must also examine how the system changes as b1 is varied on-treatment.

Since treatment lowers V substantially, it is likely that the system will be more

sensitive to small changes in b1 on-treatment. Figure 4.14 shows the how the

system changes when b1 is varied on-treatment (r = 100) and demonstrates

an amplified response from the system to changes in b1.
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Figure 4.14: Bifurcation diagrams describing how U , I, C and V change as b1

is varied (r = 100)

As anticipated, a bifurcation occurs at a much smaller value of b1 on-

treatment. When b1 = 1.092, a transcritical bifurcation occurs whereby the

infected cell and virus populations are extinct. This value is much closer to

the given value for b1 in Table 3.3 and confirms that the fixed points are more
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sensitive to small changes in b1 on-treatment. Clinically, this would imply that

differences in removal rates will be more important when the individual is on

treatment (functional deficiencies imply lower b1 values). Figure 4.15 shows

the comparison between the bifurcation diagrams when b1 is varied, on and

off-treatment. For both on and off-treatment scenarios, lower b1 values yield

lower U values and higher I, C and V values.
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Figure 4.15: Bifurcation diagrams describing how V changes as b1 is varied on

and off-treatment.

Thus, bifurcation diagrams show us that fixed points are stable for a wide

range of b1 values (0 < b1 < 115.3) off-treatment. However, on-treatment the

fixed points are much more sensitive to small changes in b1 whereby the fixed

points are stable for a small range of b1 values (0 < b1 < 1.092). At this

point, it would be interesting to find out how the system variables respond

immediately following a treatment interruption for different values of b1. We
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established that lower values of b1 yield higher values of V . The value of b1 in

the given parameter set (Table 3.4) is b1 = 0.05. Thus, we select another value

for b1 that is lower than this (b1 = 0.0005) to examine the differences in disease

progression patterns as portrayed in time series plots. We impose a single

treatment phase (100 days) followed by a treatment interruption to determine

how the variable trajectories behave immediately following the interruption.

Figure 4.16 shows the time series plots following a single 100 day treatment

phase when b1 = 0.05 and b1 = 0.0005.
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Figure 4.16: Time (days) series plots showing the effect of a treatment inter-

ruption: two different removal rate parameter values (linear and log scales)

The time series plots (Figure 4.16(a),(b)) confirm that when b1 = 0.05 and
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when b1 = 0.0005 treatment and treatment interruption affect the system in

the much the same way. That is, treatment causes the infected cell, HIV-

specific CD8+ T cell and virus populations to decay and the uninfected cell

population to grow. A major difference, as was previously established, is that

the fixed point solutions are different. That is, b1 = 0.05 yields the stable fixed

(U, I, C, V ) = (0.63, 6.93, 18.89, 16003.28),

and b1 = 0.0005 yields the stable fixed point

(U, I, C, V ) = (0.22, 19.63, 19.58, 45296.56).

When b1 < 0.05, the fixed point values U and C decrease and I and V increase.

Interestingly, the rates at which the variable populations change are also

different as depicted by the slopes of the variable trajectories. In particu-

lar, when treatment is interrupted at day 200, the rate of change of V when

b1 = 0.0005 is slightly faster than the rate of change of V when b1 = 0.05 as

seen in Figure 4.17(a) and (b). The differences in the ways that the variable

trajectories behave is partly due to the differences between their on-treatment

numbers. The higher b1 value yields higher values for U and lower values for V

at the moment when treatment is withdrawn, so this changes the way in which

they approach equilibrium. Ultimately, immediately following a treatment in-

terruption, the V population grows at a faster rate because the removal rate

parameter b1 has a lower value. In addition, the U population decays earlier

(and its slope is steeper) because b1 has a lower value.

Thus, even though there are no qualitative differences in the system when

b1 = 0.05 and b1 = 0.0005, quantitatively there are notable differences. These

results confirm that the removal rate b1 is indirectly related to V . The model
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Figure 4.17: Time (days) series plots showing the effect of a treatment inter-

ruption: two different removal rate parameter values

predicts that immediately following treatment interruption, the virus rebounds

at a rate that is indirectly related to b1: the rate of change of V is faster when

b1 is smaller. It also predicts that the uninfected CD4+ T cell population

decays faster under these same circumstances.

If we define disease progression by how quickly U falls and V rebounds im-

mediately following a treatment interruption, the model predicts that disease

progression rates are inversely related to infected cell removal rates. Subse-

quently, individuals with lower infected cell removal rates will progress through

infection faster.
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This leads to a very important part of this thesis: the clinical and experi-

mental data. In this part of the study, I assess the role of HIV-specific CD8+ T

cells in controlling the virus load and maintaining stable CD4+ T cell counts.

In the following Chapter, I outline the experimental assay methodologies used

in this study.



Chapter 5

Immunological Assays -

Methodologies

5.1 Subjects

HIV-1-infected individuals were recruited through the Infectious Disease Clinic

of the St. John’s General Hospital, St. John’s, Canada. Clinic visits were

scheduled at approximately 3-month intervals or as necessary for appropri-

ate clinical care. In conjunction with each visit, clinical evaluation was per-

formed, plasma HIV RNA was measured using Amplicor HIV-1 Monitor kits

(Roche Diagnostic Systems, Mississauga, Ontario, Canada) and peripheral

blood lymphocyte subsets were assessed by flow cytometry. Ethical approval

was obtained from the Memorial University Faculty of Medicine Human Inves-

tigation Committee and all participants provided informed consent for blood

collection and access to clinical and laboratory records.

88
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5.2 Lymphocyte Isolation

Human peripheral blood mononuclear cells (PBMC) were utilized for all tests,

and all work with HIV-infected blood products was performed in a Level-3

Biohazard Facility. Blood was collected by venipuncture in vacutainers con-

taining acid-citrate dextrose (ACD) and centrifuged for 10 minutes at 400 g

(1300 rpm in Beckman T-J6 centrifuge). Plasma was removed and replaced

by an equal amount of phosphate-buffered solution (PBS - PH 7.2). The

PBS/cell mixture was transferred to a sterile 50 ml tube, layered over 15 ml

of Ficoll-paque gradient separation medium (Pharmacia Chemicals, Dorval,

Quebec, Canada) and centrifuged at 400 g for 30 minutes. Interface cells were

collected, washed in 30 ml PBS, and centrifuged for 5 minutes. The cells were

washed again in PBS + 1% fetal calf serum (FCS), centrifuged for 5 minutes

at 300 g and resuspended in lymphocyte medium (RPMI 1640 with 10% FCS,

10 mM Hepes, 2 mM l-glutamine, 1% penicillin/streptomycin, and 2 × 10−5

M 2-mercaptoethanol (Gibco, Invitrogen Corporation, Carlsbad, California)).

Cells were counted and cryopreserved in approximately 1 ml of sterile freezing

medium and stored in sterile cryovials at −70◦C for one week before transfer

to liquid nitrogen for longer term storage.

5.3 Cell counting

Fifty ul of cell suspension was pipetted into a single well of a 96-well microtiter

plate (Flow Laboratories, Virginia, USA) in conjunction with 50 ul of Trypan

Blue (Sigma Chemical Co., St. Louis, Mo.). Trypan blue is an exclusion

dye that stains dead cellular matter. Cells were counted using a cytometer
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to obtain a viable cell count. Cell count was represented by total number of

viable cells per ml of medium.

5.4 Reanimation of Frozen PBMC

Lymphocyte medium (10 ml) was pipetted into a sterile 15 ml tube. Cry-

opreserved cells were obtained from liquid nitrogen storage, immediately im-

mersed into a 37◦C waterbath and gently agitated until contents were almost

completely thawed. Cells were then immediately transferred to the 15 ml tube

containing 10 ml lymphocyte medium and centrifuged for 5 minutes at 300 g.

The cells were then resuspended in 10 ml of fresh medium, counted and cul-

tured at approximately 1 ×106/ml in a sterile 10 ml tube overnight for direct

use in experimental assays the following day.

5.5 Infection of PBMC

PBMC to be infected were counted and centrifuged at 300 g for 5 minutes.

Pelleted cells were resuspended at 1.0×106/ml and dispensed into 1 ml aliquots

into labelled sterile 15 ml tubes. Again PBMC were pelleted by centrifugation

at 300 g for 5 minutes. The supernatant was discarded and cell pellets were

directly infected with recombinant Vaccinia Viruses (rVVs) at a 2:1 multiplic-

ity of infection (MOI) (2.0 × 106 plaque-forming units (PFU) per 1.0 × 106

cells) and incubated at 37◦C, 5% CO2 for 1 hour. Cells were resuspended at

2.0× 106 PBMC per ml for direct use in ELIspot assay as described in section

5.6.
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5.5.1 Recombinant Vaccinia Viruses

PBMC were infected with the following recombinant vaccinia viruses: vVK1

(gag/pol), vCF21 (pol), vPE16 (gp160), vNef (nef), and vSC8 (Escherichia

coli-galactosidase, control) all from the NIH AIDS Research and Reference

Reagent Program, Rockville, Maryland, USA.

5.6 ELISpot assay

Microtiter assay plates (Multiscreen; Millipore Corporation, Billerica, MA)

were coated with 100 ul of 7.5 ug per ml anti-IFN-γ mAb 1-D1K (Mabtech,

Stockholm, Sweden) overnight at 4◦C. The plates were then washed six times

with PBS, and 100 ul of recombinant vaccinia-infected PBMC (0.2×106) were

added in duplicate and incubated at 37◦C, 5% CO2 for 16 hours. Negative

control wells contained unstimulated PBMC and PBMC infected with vsc8

- a vaccinia virus vector expressing β-galactosidase. Positive control wells

contained 4 ug per ml of phytohemagglutinin (PHA). Following incubation,

the cells were removed and the wells were washed as described above followed

by the addition of 100 ul of 1 ug per ml biotinylated anti-IFN-γ mAb 7-B6-1

(Mabtech) to each well. The plate was incubated for 2 additional hours at room

temperature followed by washing six times, after which 100 ul of streptavidin

alkaline phosphatase conjugate (Mabtech) diluted 1/1000 was added to each

well. The plate was incubated for 1 hour at room temperature, followed by

another six washes. 100 ul of chromogenic alkaline phosphatase substrate

(Bio-Rad, Hercules, CA) diluted 1/10 in Tris buffer was then added to each

well. After 30-45 minutes, plates were washed with tap water to stop color
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reactions and then air-dried. Spots corresponding to the footprints of the

IFN-γ-secreting cells were counted with an automated Elispot counter (Zellnet

Consulting, New Jersey). Responses were considered positive if the number

of spots was more than twice the negative control and greater than 50 per

million PBMC. Results are expressed as spot forming cells per million PBMC

(SFC per 106 PBMC) following subtraction of negative controls whereby a

spot-forming cell is an IFN-γ-producing cell.



Chapter 6

Clinical and experimental

results

The study cohort included 22 HIV-1-infected individuals and represents in-

fected individuals with a variety of disease progression patterns in the chronic

phase of infection. Table 6.1 summarizes the complete set of sample dates for

each study participant and includes T cell counts, virus loads and treatment

status at the time that each sample was taken. Sample dates are arranged

chronologically. These particular samples were used in experimental assays to

assess HIV-specific CD8+ T cell activity in the contexts of high and low virus

loads. Virus loads (VL) that are <1.7 or <2.6 (depending on the sensitivity

of the RNA detection assay used) are considered undetectable.
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Table 6.1: Summary data for study participants

subject CD4+ T cells CD8+ T cellsa VLb sample date treatment

status

1 280 1360 3.75 1/12/2004 on

3 51 1122 4.87 9/30/1999 off

270 954 <1.7 10/9/2003 on

255 765 <1.7 12/23/2004 on

17 507 624 3.66 12/9/2004 off

20 285 1045 <2.6 4/19/1999 on

374 1342 <1.7 4/17/2000 on

378 1008 <1.7 8/17/2000 on

35 621 1173 3.25 8/26/1999 on

44 630 864 2.35 11/6/2003 on

51 186 1782 5.17 9/9/1998 on

104 897 4.44 1/30/2003 on

403 2201 <1.7 9/25/2003 on

55 305 1780 <1.7 1/27/1997 on

60 <1 476 4.93 12/12/2001 on

<1 318 >5.88 11/6/2003 off

a - T cell counts are expressed as the number of T cells/ul of peripheral blood (linear scale)

b - VL are expressed as the number of HIV RNA copies/ml of plasma

ND - not done
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Table 6.1: Summary data for study participants, cont’d

subject CD4+ T cells CD8+ T cellsa VLb sample date treatment

status

64 608 688 2.46 8/30/1999 on

629 799 3.05 3/14/2002 on

570 1121 <1.7 3/9/2004 on

71 1624 870 <1.7 12/21/2001 on

1479 957 <1.7 5/16/2002 on

1161 1188 3 10/10/2002 off

1102 1392 3.96 3/1/2004 off

962 1300 4.37 9/13/2004 off

76 490 817 4.51 3/6/1997 off

570 480 <1.7 2/8/2001 on

507 481 2.13 8/29/2002 on

83 165 649 5.04 6/26/2003 off

72 240 3.29 11/27/2003 on

92 663 731 <1.7 6/3/1999 on

644 1764 4.8 1/15/2004 off
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Table 6.1: Summary data for study participants, cont’d

subject CD4+ T cells CD8+ T cellsa VLb sample date treatment

status

98 209 385 3.84 11/17/1999 on

448 798 <2.6 2/14/2002 on

117 64 1040 3.32 12/16/1999 on

144 1752 3.54 4/27/2000 on

136 400 416 4.2 1/24/2000 off

162 261 3.15 7/5/2001 on

187 296 4.42 5/27/2002 off

253 319 4.91 12/15/2003 off

200 320 4.88 5/27/2004 off

140 540 2772 4.31 7/10/2003 off

157 400 1320 5.12 11/7/2002 off

ND ND <2.6 8/12/2004 on

166 276 696 <1.7 5/13/2004 on

174 513 1782 4.51 11/13/2003 off

442 1716 3.26 5/3/2004 on

176 418 1210 <1.7 1/8/2004 on
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6.1 Clinical laboratory data

Each HIV-infected individual in the cohort fits into one of two groups based

on differences in disease progression patterns (rates) as indicated by clinical

laboratory data. The groups are fast progressors and slow progressors. HIV-

infected individuals who experienced rapidly falling CD4 counts and rapid

viral rebound following treatment interruption (off-treatment), as indicated

by clinical laboratory parameters, were classified as fast progressors. HIV-

infected individuals who maintained stable CD4 counts and virus loads at

controllable levels following treatment interruption (off-treatment), also indi-

cated by clinical laboratory parameters, were classified as slow progressors.

A clear distinction between fast and slow progressors can be illustrated with

this example. Subject 136 had an on-treatment undetectable virus load (<2.6)

on 11/20/2001 (not shown in Table 6.1 since this sample was not tested by

Elispot) which rapidly rebounded to 4.42 by 5/27/2002 when treatment was

withdrawn and peaked at 4.91 on 12/15/2003. The mean virus load during

the off-treatment timeframe was 4.53. Concomitantly, CD4 counts rapidly

fell from 220 on 11/20/2001 to 187 on 5/27/2002 and troughed at 176 on

05/05/2003. The mean CD4 count during the off-treatment timeframe was

216. Thus, subject 136 is a fast progressor. Subject 71 had an undetectable

virus load (<1.7) on 5/16/2002 that slowly rose to 4.37 by 9/13/2004 when

treatment was withdrawn and subsequently fell again to 3.98 while treatment

remained off (not shown in Table 6.1). The mean virus load during the off-

treatment timeframe was 3.61. CD4 counts remained high, troughing at 720

in the off-treatment timeframe. The mean CD4 count during the off-treatment

timeframe was 937. Thus, subject 71 is a slow progressor.
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The mean off-treatment trough CD4 counts (nadir) and peak virus loads

for each of the 22 study subjects were used as indicators of disease progression

rates and grouped according to a cluster analysis: a multivariate technique

designed to create groups within multivariate data.

Table 6.2: Summary off-treatment data for fast progressors

subject peak VL trough CD4 count

1 5.49 200

3 4.87 28

20 5.5 76

35 4.77 245

51 5.01 117

55 5.54 311

60 >5.88 0

76 4.83 409

83 >5.88 40

92 4.93 340

98 5.73 69

117 5.84 27

136 4.91 176

157 5.81 40

166 >5.88 221

174 5.16 380
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Table 6.3: Summary off-treatment data for slow progressors

subject peak VL trough CD4 count

17 4.32 296

44 4.37 480

64 3.72 594

71 3.76 925

140 4.32 462

176 1.7 245

The cluster analysis revealed two distinct groups (p<0.05) that adhered

to the above principles, yielding 16 fast progressors and 6 slow progressors

summarized in Tables 6.2 and 6.3. See Appendix for statistical reference.

The fast and slow progressor grouping reveals notable differences in trough

CD4 counts and peak virus loads between the two groups. In the fast pro-

gressor group, virus loads are greater than 4.7 HIV RNA copies/ml blood and

trough CD4 counts range from 0 to 409. In the slow progressor group, virus

loads are less than 4.4 and CD4 counts range from 245 to 925. As discussed

in the introduction, a controlled virus load is considered to be below 4.5 and

an uncontrolled virus load is considered to be above 4.5 HIV RNA copies/ml

blood. Thus, the fast progressors do not appear capable of inherently suppress-

ing the virus load to controllable levels during the chronic phase of infection,

but the slow progressors do.

For further comparison of the groups, the means and medians of the trough

CD4 counts and peak virus loads were calculated and are shown in Table 6.4.
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Table 6.4: Comparison of off-treatment trough CD4 counts and peak virus

loads for fast and slow progressors

fast progressor slow progressor

mean VL 5.38 ± 0.44 3.7 ± 1.02

CD4 167 ± 138 500 ± 244

median VL 5.5 4.04

CD4 147 471

Fast and slow progressor groups differ significantly in mean off-treatment

trough CD4 counts and peak virus loads (Kruskal-Wallis rank-sum test; p<0.05)

revealing striking differences between the groups. The mean trough CD4 count

in the fast progressor group is 3-fold lower than in the slow progressor group

and the peak virus load is 1.5-fold higher. Subject 176 had an undetectable

off-treatment virus load which skews the slow progressor virus load data re-

sulting in a high standard deviation. This most likely arises due to residual

drugs in the host system. This individual resumed treatment following a brief

(one month) treatment holiday and subsequent measures of virus load remain

undetectable (<1.7).

Thus statistical analysis of clinical lab data shows that among the 22-

member cohort, 16 are fast progressors and 6 are slow progressors as deter-

mined by a cluster analysis of nadir and peak virus load data and the principles

outlined at the beginning of this section. Having classified each member of the

cohort as a fast or slow progressor, the role of HIV-specific CD8+ T cells in

contouring these classifications can be assessed.
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6.2 Experimental observations

If your experiment needs statistics, you ought to have done a better

experiment. - Ernest Rutherford (1871-1937)

6.2.1 Quantity of responses

To assess the role of HIV-specific CD8+ T cells in contouring the fast and

slow progressor groups, measurements of IFN-γ production from HIV-specific

CD8+ T cells were taken for each of the 22 members of the cohort. The number

of measurements taken for each individual was based on sample availability

and ranged from 1 to 5. (See Table 6.1.) When possible, measurements were

taken in pairs when virus loads were either low or high to enable a comparison

between the HIV-specific CD8+ T cell activities in both contexts. One HIV-

specific CD8+ T cell is represented by a spot on an Elispot plate. A minimum

of 50 spot-forming cells (SFC) (background number) per million PBMC was

considered a positive response.

The goal of these experiments was to assess each subject’s ability to mount

HIV-specific memory T cell responses against stimulating agents (HIV/vaccinia

constructs) in the contexts of high and low virus loads and to evaluate the

importance of both the quantity and quality of these cells in maintaining a

controllable virus load. We hypothesized that the magnitudes of all positive

responses, as defined above, would correlate with virus load. We also hypoth-

esized that the magnitudes of responses in the fast progressor group would

be lower than in the slow progressor group in the contexts of low and high

virus loads, since the mean virus load of a fast progressor is higher than the



CHAPTER 6. CLINICAL AND EXPERIMENTAL RESULTS 102

mean virus load of a slow progressor. The Elispot results for fast and slow

progressors are shown in Tables 6.5 and 6.6.

Table 6.5: Compiled Elispot results - fast progressors

subject sample date vnef vvk1 vpe16 combined vnef + vvk1 VL on/off

1 1/12/2004 1770 1625 405 3800 3395 3.75 on

3 9/30/1999 60 448 388 896 508 4.02 off

10/9/2003 78 258 465 801 336 <1.7 on

12/23/2004 25 83 45 153 108 <1.7 on

20 4/19/1999 470 413 ND 883 883 <2.6 on

4/17/2000 405 383 ND 788 788 <1.7 on

8/17/2000 403 388 208 999 791 <1.7 on

35 8/26/1999 245 1835 ND 2080 2080 3.25 on

51 9/9/1998 3 68 38 109 71 5.17 on

1/30/2003 70 528 68 666 598 4.44 on

9/25/2003 33 235 78 346 268 <1.7 on

55 1/20/1997 0 148 ND 148 148 4.66 on

60 12/12/2001 0 3 5 8 3 4.93 on

11/6/2003 0 25 28 53 25 >5.88 off

76 3/6/1997 50 460 ND 510 510 4.51 off

3/6/1997 80 425 33 538 505 4.51 off

2/8/2001 35 83 ND 118 118 <1.7 on

8/29/2002 285 465 ND 750 750 2.31 on

83 6/26/2003 1258 1538 ND 2796 2796 5.04 off

11/27/2003 268 673 ND 941 941 >5.88 on
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Table 6.5: Compiled Elispot results - fast progressors, cont’d

subject sample date vnef vvk1 vpe16 combined vnef+vvk1 VL on/off

92 6/3/1999 530 755 288 1573 1285 <1.7 on

1/15/2004 4208 3230 843 8281 7438 4.8 off

98 11/17/1999 95 90 8 193 185 3.84 on

2/14/2002 160 203 48 411 363 <2.6 on

117 12/16/1999 198 118 133 449 316 5.15 on

4/27/2000 225 175 228 628 400 3.54 on

136 1/24/2000 1070 1550 ND 2620 2620 4.2 off

7/5/2001 80 145 100 325 225 3.15 on

5/27/2002 405 510 573 1488 915 4.42 off

12/15/2003 1240 408 533 2181 1648 4.91 off

5/27/2004 120 83 40 243 203 4.88 off

157 11/7/2002 80 543 128 751 623 5.12 off

8/12/2004 23 55 20 98 78 <2.6 on

166 5/13/2004 33 1523 350 1906 1556 <1.7 on

174 11/13/2003 1120 1778 780 3678 2898 4.51 off

5/3/2004 733 775 433 1941 1508 3.26 on
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Table 6.6: Compiled Elispot results - slow progressors

subject sample date vnef vvk1 vpe16 combined vnef+vvk1 VL on/off

17 12/9/2004 338 3390 295 4023 3728 3.66 off

44 11/6/2003 5 300 468 773 305 2.35 on

64 8/30/1999 30 3600 823 4453 3630 2.46 on

3/14/2002 88 2278 2113 4479 2366 3.05 on

3/9/2004 40 1310 1025 2375 1350 <1.7 on

71 12/21/2001 1280 1240 293 2813 2520 <1.7 on

5/16/2002 855 863 218 1936 1718 <1.7 on

10/10/2002 260 990 350 1600 1250 3 off

3/1/2004 1003 635 215 1853 1638 3.96 off

9/13/2004 700 395 228 1323 1095 4.37 off

140 7/10/2003 1668 1555 1458 4681 3223 4.31 off

176 1/8/2004 43 620 45 708 663 <1.7 on

vnef - vaccinia virus vector expressing HIV nef

vvk1 - vaccinia virus vector expressing HIV gag/pol

vpe16 - vaccinia virus vector expressing HIV env

ND - not done

Tables 6.5 and 6.6 show a broad range of combined responses both in on

and off-treatment contexts, as seen in bold text. The number of SFC produced

by the 16 fast progressors varies from 8 SFC (subject 60) to 8281 SFC (subject

136) per million PBMC, whereas the number of SFC produced by the 6 slow

progressors varies from 708 SFC (subject 176) to 4681 SFC (subject 140)

per million PBMC. The range in the number of SFC is broader in the fast
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progressor group indicating more variability in the numbers of SFC in this

group. There are statistical outliers in the fast progressor data set, but the

variability does not simply arise due to the presence of these statistical outliers.

When the statistical outliers in the fast progressor group (53 SFC - subject 60;

8281 SFC - subject 92) are omitted, the range in the number of SFC produced

by the fast progressors changes to 98 SFC (subject 157) to 3800 (subject 1),

which, in spite of its similarity to the range of responses produced by the

slow progressor group, is still more variable. This becomes apparent when the

means and standard deviations are compared in Table 6.7. The on-treatment

number of SFC on the sample date 12/12/2001 for subject 60 is not positive

(<50 SFC/106 PBMC) thus are considered to be zero.

The data in the fast progressor group is not normally distributed (p<0.05)

as confirmed by a continuous fitting distribution Shapiro-Wilk test statistic

for normalcy, whereas the data in the slow progressor group is normally dis-

tributed (p>0.05). The non-normal distribution of the fast progressor data

lends to the variability of the data as it produces a higher standard deviation.

Some samples in the fast progressor group were not tested for responses

against vpe16 indicated by the ND (not done) label. For statistical purposes,

the column showing responses against vpe16 is omitted in order to suitably

compare the fast and slow progressor groups. We chose not to simply omit the

individual sample dates (rows) that included vpe16 as a test antigen in order to

maximize the number of fast progressor samples. The range of responses in the

fast progressor group becomes 71 SFC (subject 51) to 7438 SFC (subject 92)

and the range of responses in the slow progressor group becomes 305 SFC to

3728 SFC when the vpe16 column is omitted. As was the case in the combined
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data set, the fast progressor vnef+vvk1 data set is not normally distributed

(p<0.05) whereas the slow progressor data set is (p>0.05). In addition, the

higher variability within the fast progressor data set remains. The numbers of

SFC on sample dates 12/12/2001 and 11/6/2003 for subject 60 (highlighted)

are not positive (<50 SFC/106 PBMC) thus are considered to be zero.

To further assess any quantitative differences in the numbers of SFC be-

tween the fast and slow progressor groups, the means and medians were cal-

culated for on and off-treatment data, shown in Table 6.7.

Table 6.7: Comparison of mean and median HIV-specific CD8+ T cell re-

sponses to vnef + vvk1 in fast and slow progressors for different VL

on off

mean fp VL 3.04 ± 1.33 4.63 ± 0.35

SFC 747 ± 795 1879 ± 2106

sp VL 2.09 ± 0.54 3.86 ± 0.56

SFC 1793 ± 1149 2187 ± 1206

median fp VL 2.6 4.51

SFC 400 915

sp VL <1.7 3.96

SFC 1718 1638

On-treatment mean numbers of SFC in the slow progressor group are sig-

nificantly higher than in the fast progressor group (p<0.05). This suggests

that fast and slow progressors make different amounts of SFC on-treatment
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when the virus load is reduced. Conversely, there is no significant difference

between off-treatment numbers of SFC (p>0.05) between the two groups sug-

gesting that both groups have similarly high numbers of off-treatment SFC.

There is a significant difference between the on and off-treatment numbers

of SFC (p<0.05) in the fast progressor group, but not in the slow progressor

group (p>0.05). In fact, in the slow progressor group the number of SFC does

not change considerably despite an approximate 2-log change in virus load.

Thus, refering to the hypothesis in subsection 6.2.1, the magnitude of positive

SFC responses in the fast progressor group are indeed lower than in the slow

progressor group. In addition, in the fast progressor group, the magnitude of

positive SFC responses positively correlates with the virus load: higher mean

virus loads are associated with higher numbers of SFC. However, in the slow

progressor group, the magnitude of positive SFC responses negatively corre-

lates, if anything, with the virus load: higher mean numbers are associated

with lower virus loads. Thus, the data show that there are significant quanti-

tative differences in the numbers of SFC between the fast and slow progressor

groups in the contexts of high and low virus loads.

Notably, off-treatment, the virus load was maintained at controllable levels

(3.86) in the slow progressor group in the presence of high frequencies of SFC

(2187) which implies that these cells are able to control the virus to suppress

the virus load. In the fast progressor group, this is not the case. Although the

mean off-treatment numbers of SFC (1879) are high, the mean off-treatment

virus load is also high (4.63). Therefore, even in the presence of high quantities

of HIV-specific CD8+ T cells, viral control is not achieved in the fast progressor

group. This implies that the quantity of HIV-specific CD8+ T cells, although
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important in controlling the virus, is not the only factor. This, in turn, implies

that the HIV-specific CD8+ T cells in the two groups are qualitatively different.

Subject 92 is a good example of this observation. Even though the magnitude

of SFC is extremely high off-treatment (7438), the virus is not under control,

as indicated by the high off-treatment virus load (4.8).

6.2.2 Quality of HIV-specific CD8+ T cells

The data imply that the HIV-specific CD8+ T cells in the fast and slow pro-

gressor groups differ qualitatively. The fact that the range of SFC responses in

the fast progressor group (78-7438) is broader than the slow progressor group

(305-3728) is one point that implies qualitative differences. That is, the level

of positive responses fluctuates more in the fast progressor group implying

lack of stability in these responses. In addition, the small change in the mean

numbers of on and off-treatment SFC in the slow progressor group indicates

that the responses are more stable than the responses in the fast progressor

group.

Fast progressors may have impaired HIV-specific CD8+ T cell responses in

terms of proliferative ability and in general, maturation. If the HIV-specific

CD8+ T cell responses were functionally impaired, virus loads would poten-

tially be consistently high due to a lack of control of viral replication by these

cells [Appay et al., 2000; Hess et al., 2004; Shankar et al., 2000]. Simply put,

these cells may not be able to do what they are meant to do. In short, higher

virus loads are associated with functionally impaired cells and lower virus loads

are associated with functionally intact cells that impose “negative pressure”

on the virus [Betts et al., 2005].
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To illustrate the potential impact of qualitative differences of the HIV-

specific CD8+ T cells in the fast and slow progressor groups and to assess the

stabilities of these responses, subjects 136 and 71 were selected from the fast

and slow progressor groups as representatives of each group. These subjects

were selected based on the relatively high number of samples (5) available for

each. The high number of samples taken over a period of approximately 3

years allows us to clearly represent how the SFC and virus loads change with

respect to time over an extended period of time and to examine the stability

of these responses in different treatment contexts.

To illustrate potential differences in qualities of responses, the number

of SFC per million PBMC and the virus loads for these subjects (y-axis on

linear and log10 scales, respectively) were graphed against sample dates (x-

axis) as seen in Figure 6.1. The number of SFC are represented by bars

(off-treatment samples are black; on-treatment samples are grey) and virus

loads are represented by lines. Undetectable virus loads (< 1.7) were assumed

to be the minimum cut-off value for the virus load and are therefore portrayed

as “zero” values on the graphs as seen on the secondary y-axis on the right.

All SFC responses are positive (> 50 SFC above background).

Subject 136 is initially off treatment. The virus load is detectable (4.2) on

this sample date (1/24/2000). The number of SFC is highest (2620) on this

date. The virus load subsequently falls (3.15) upon initiation of treatment by

7/5/2001. This is associated with an 11-fold reduction in the number of SFC

(225). Subsequent to treatment withdrawal, over the following three years, the

virus load steadily climbs (4.42), peaks (4.91) until it reaches a setpoint level

(4.88). Concomitantly, the number of SFC also steadily climbs (915), peaks
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(a) Representative fast progressor, 136 (b) Representative slow progressor, 71

Figure 6.1: Comparison of SFC/106 PBMC and virus loads for the fast and

slow progressor representatives

(1648), but then drops 8-fold (203) by 5/27/2004. The number of SFC drops

while the virus load remains high and therefore these responses are unstable.

The fact that the virus load remains high despite potent anti-HIV responses

(high numbers of SFC) implies that these cells may be ineffective and the

responses unstable. If these cells were functioning normally and efficiently to

remove infected cells and to impose anti-viral pressure on the virus, the viral

loads would most likely be reduced and perhaps the responses would be more

stable. When the virus load rebounds following treatment interruption, the

HIV-specific CD8+ T cells respond rapidly by proliferating due to increased

antigen load, but do not maintain these proliferative responses over time, as

indicated by the drop in number of SFC. Concomitantly, they do not clear

the virus effectively to reduce the virus load or maintain it at controllable

levels. The inability of the HIV-specific CD8+ T cells in the fast progressor



CHAPTER 6. CLINICAL AND EXPERIMENTAL RESULTS 111

representative to control the virus off-treatment demonstrates that these cells

are ineffective in vivo. This ineffectiveness may be due to stunted maturation.

If these cells were preterminally differentiated, they would not serve their roles

as fully-functional effector cells. This may manifest in the reduced ability to

clear infected cells from the system. This supports the theory that the HIV-

specific CD8+ T cell responses are functionally impaired in all fast progressors.

Subject 71 is initially on treatment. The virus load is undetectable (<1.7)

on the first two sample dates. The numbers of SFC are highest (2520 and 1718)

on these dates. When treatment is withdrawn, the virus load subsequently in-

creases (3.0) by 10/10/2002 and steadily climbs (3.96) over the following two

years to a setpoint level (4.37) by 9/13/2004. Concomitantly, the number of

SFC decreases (1250), rises slightly (1638) and then decreases again (1095)

by the fifth sample date 9/13/2004. The virus load continues to drop (3.98)

to lower levels by 3/10/2005 (not shown). The fact that the virus load is

maintained at controllable levels in the presence of lower stable frequencies

of HIV-specific CD8+T cells implies that these cells are functionally intact;

or at least more effective than those of the fast progressor representative.

Prior to treatment interruption, the HIV-specific CD8+ T cells demonstrate

unimpaired proliferative abilities as indicated by high numbers of on-treatment

SFC. When the virus load rebounds following treatment interruption, the HIV-

specific CD8+ T cells maintain these good proliferative responses over time, as

indicated by the relatively constant number of SFC. Concomitantly, they clear

the virus effectively to keep the virus load down and to maintain it at control-

lable levels. The fact that the slow progressor representative demonstrates the

ability to control the virus via HIV-specific CD8+ T cell responses supports
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the theory that the HIV-specific CD8+ T cell responses are more functionally

intact in slow progressors than they are in fast progressors.

Therefore, these data indicate that there are qualitative differences between

the HIV-specific CD8+ T cells in the fast and slow progressor groups.

6.2.3 Comparison of theoretical and experimental data

When comparing quantitative results obtained mathematically and experimen-

tally, we see that the model accurately predicts on and off-treatment disease

equilibrium states with respect to HIV-specific CD8+ T cell frequencies and

virus loads.

Table 6.8: Comparison of theoretical and experimental CD8+ T cell responses

and virus loads

on off ratio

exp fp VL 3.04 4.63 1.52

SFC 747 1879 2.52

math fp V 2.65 4.66 1.76

C
∗

1183 1958 1.66

exp sp VL 2.09 3.86 1.85

SFC 1793 2187 1.22

math sp V 2.32 4.20 1.81

C
∗

1094 1889 1.73

∗ - SFC → SFC/106 PBMC; C → cells/100ul

Table 6.8 shows that the experimental and theoretical trends are the same

with respect to HIV-specific CD8+ T cell responses and virus loads on and
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off treatment. Since we assume that the fast progressors have impaired HIV-

specific CD8+ T cell responses, we assign a lower value to b1 (infected cell

removal rate) for the fast progressors. This qualitative difference, represented

by differences in this parameter between the two groups, yields different equi-

librium values as seen in Table 6.8. In the fast progressor group, the virus

load is 1.52 times higher off-treatment (than on-treatment) according to ex-

perimental results and is 1.76 times higher according to the model (infected cell

removal rate b1 = 0.0005). There are 2.52 times as many SFC off-treatment

(than on-treatment) and 1.66 times as many HIV-specific cells according to

the model. In the slow progressor group, the virus load is 1.85 times higher off-

treatment (than on-treatment) according to experimental results and is 1.81

times higher according to the model (infected cell removal rate b1 = 0.05).

There are 1.22 times as many SFC off-treatment and 1.73 times as many

HIV-specific CD8+ T cells according to the model. The only considerable dis-

crepancies between experimental results and the model are the on-treatment

numbers of SFC in the fast and slow progressor groups. The model predicts

smaller differences in on and off-treatment numbers of SFC in the fast pro-

gressor group and larger differences in on and off-treatment numbers of SFC

in the slow progressor group. These differences arise from the differences in

the theoretically-determined C values whereby this value is predicted to be

higher in the fast progressor group, and lower in the slow progressor group

on-treatment than the experimentally-obtained values. It is important to bear

in mind that the value r = 100 was the “selected” treatment parameter value.

See Chapter 4. Therefore, in the case of the fast progressors, if treatment is

more efficacious, that is, if the treatment parameter value was higher, then
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the theoretically-determined value would be lower. A higher r value would

also reduce the viral setpoint to a lower level. However, in the slow progres-

sor group, a lower value for r would need to be selected to allow for a higher

theoretically-determined value. A lower r value would subsequently result in

a higher viral setpoint. Thus, we can narrow the gap between the theoretical

and experimental results by selecting a different value for r.

What is most important in comparing the theoretical and the experimen-

tal results is the relative proportion of the number of SFC to virus load on

and off-treatment. For example, despite the difference between the absolute

numbers of SFC in the theoretical and experimental settings, the number of

SFC is higher off-treatment in both. Likewise, in the slow progressor group,

the number of theoretically and experimentally-determined SFC are greater

off-treatment. The fact that the theoretically-determined numbers of SFC are

more disparate than the experimentally-determined numbers in the slow pro-

gressor group, and less disparate in the fast progressor group, does not take

away from the predictive potential of the model due to the fact that we can

modify the theoretically-determined numbers by simply modifying the treat-

ment parameter value to more appropriately describe the efficacy of treatment.

In summary, I report quantitative and qualitative differences in the HIV-

specific CD8+ T cell responses between two clinically-determined subgroups

of HIV-1-infected indidviduals. One group, the fast progressors, showed im-

paired responses which matched consistently high virus loads, as determined by

high off-treatment peak virus loads and high mean on and off-treatment virus

loads. Another group, the slow progressors, showed stable effective responses

which matched virus loads that were at controllable levels as determined by
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low off-treatment peak virus loads and low mean on and off-treatment virus

loads. In the following section, we further examine the reasons for these differ-

ences and the impact that qualitative differences in HIV-specific CD8+ T cells

has on mathematical modeling of HIV-immunopathogenesis and the effects of

treatment interruption.



Chapter 7

Discussion and conclusions

The novel mathematical model of HIV immunopathogenesis I constructed pre-

dicts the existence of a single stable fixed point. Although global stability of

the stable fixed point had not been demonstrated, numerical simulations have

not demonstrated the existence of limit cycles chaos or any other phenomena.

With a single stable fixed point, the initial conditions do not affect the eventual

arrival at this single equilibrium point. These initial conditions represent the

initial numbers of T cells and the virus load. Therefore, the model predicts

that regardless of the initial number of T cells or the amount of virus that

enters the system or where/how it enters the system at the point of infection,

the outcome of infection, as defined by the numbers of T cells at equilibrium

and the viral setpoint, does not change. This is not to say that all infected

individuals will have the same setpoint. The setpoint is determined by the

parameter values used in the model.

Naturally, as previously predicted, the existence of a single stable fixed

point means that treatment cannot be used to reset the viral setpoint. When
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treatment is imposed on the system, the system behaves according to known

effects of treatment on the HIV-infected immune system. The virus load falls

and the uninfected CD4+ T cell population rises. Bifurcation analysis con-

firmed an indirect relationship between the treatment parameter r, or the

efficacy of treatment, and the viral setpoint V and a direct relationship be-

tween r and the number of infected cells at equilibrium, U . Thus, treatment

functions to transiently lower the viral load but not to permanently reduce it

to a lower setpoint level.

Another implication of a single stable fixed point is that death is never

predicted as a stable state. All biological systems are finite. Thus, future

work will involve modifying the model to predict at least two stable biologically

relevant equilibrium states: one to represent the host living with virus and one

to represent the death of the host. A way to do this may involve including an

additional term in the model that represents interactions between HIV-specific

CD4+ T cells and HIV-specific CD8+ T cells.

The model also predicted a virus-free equilibrium state at very high treat-

ment values. That is, the model is sensitive to small changes in drug efficacies

that result in very low on-treatment virus loads. This result implies that, ac-

cording to the model, it is theoretically possible to clear the virus from the

system if treatment is virtually 100% effective and maintained ad infinitum.

However, treatment is never this effective in reality or maintained ad infinitum.

This result simply reflects the fact that if treatment reduces the viral produc-

tion rate beyond some threshold, the virus population decays faster than it

grows. However, even if the virus population does decay, which it does in

some individuals, this decay is not fast enough for eradication to occur during
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a normal lifespan.

It is important to reiterate that the single stable fixed point is the product

of a particular parameter set. If the parameter set was different, it is possible

that the model would predict more than a single stable equilibrium point.

The existence of at least two stable fixed points would allow for alternate

states of being resulting in more than a single potential outcome in terms

of equilibrium states. For example, an infected individual may tend to an

equilibrium state whereby they are controlling the virus reasonably well if their

CD4+ T cell count is above some threshold. In addition, the model solutions

for the chosen parameter set approach the single stable fixed point according

to numerical simulations and bifurcation diagrams. However, it should be

noted that for a different parameter set, the model may in fact predict the

existence of more complicated behaviour such as limit cycles. In this thesis,

more complicated behaviours were not observed: all solutions for the chosen

parameter set approached the single stable fixed point.

An analysis of the model without the explicit inclusion of a population

of cells representative of an HIV-specific CD8+ T cell population showed two

important things. One, the predicted single stable fixed point value obtained

from analysis of the three-dimensional system comprised equilibrium values

representative of an HIV-infected individual not controlling the virus. The

same parameter set was used in both the three and four-dimensional models.

Two, the treatment parameter had to be higher to induce analogous effects

on the three-dimensional system. These observations reflect the important

role of HIV-specific CD8+ T cells in controlling the virus, at least in the

theoretical setting, and provide support for the importance of including this
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variable explicitly in the model. Therefore, the model reflects the dual role of

HIV-specific CD8+ T cells and antiretroviral treatment to suppress the virus

load to lower levels. This makes the model strong and reasonable with respect

to accurately describing immunopathogenesis and the effects of treatment.

The C equation in the four-dimensional model imposes a term on the in-

fected cell equation that removes infected cells from the system at a particular

rate. Clinical data showed that the HIV-infected individuals can be catego-

rized as fast or slow progressors. We hypothesized that the rate of removal

of infected cells partially dictates status as one or the other. That is, fast

and slow progressors have different removal rate parameter values. Bifurca-

tion diagrams supported this hypothesis. An inverse relationship was observed

between the removal rate and the infected cell and virus populations at equi-

librium. Lower values of b1, or the removal rate parameter, were associated

with higher fixed point values for infected cells I and viral loads V , and lower

fixed point values for uninfected cells U . Higher fixed point values for V and

lower fixed point values for U are typical of a fast progressor. Disease progres-

sion was defined by both the rate of viral rebound and the loss of HIV-specific

CD4+ T cells immediately following a treatment interruption and by the val-

ues of the fixed point coordinates U and V in the model. Therefore, an inverse

relationship was observed between disease progression and the removal rate.

Disease progression was found to be slower when the removal rate was higher

and thus fast progressors are assumed to have a lower removal rate parameter

value than slow progressors.

The model predicts that differences in removal rates of infected cells (differ-

ences in fast and slow progressors), are more significant when treatment is on.
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When treatment was off, a bifurcation occured at a considerably higher value

of b1 than when treatment was on. Knowing this, we investigated whether

treatment interruptions could be used to boost HIV-specific CD8+ T cell ac-

tivity (as determined by the trajectories in the time series plots) during the

off-treatment phases to lower the viral setpoint, even when the removal rates

are different. The model predicted that this could not happen, regardless of

the value of b1, unless the value of the rate actually changed during infection.

Therefore, since the rates are constant, the model predicts that treatment in-

terruptions can transiently boost HIV-specific CD8+ T cell frequencies but

cannot be used to reset the viral setpoint. It seems as though the removal

rate should increase with increased HIV-specific CD8+ T cell frequency, but

it does not. This rate remains constant and the changes in the HIV-specific

CD8+ T cell population are the result of the value of the parameter, and not

by the number of cells at any given point.

Due to factors such as CTL exhaustion, the removal rate parameter very

likely becomes smaller as the disease progresses. Theoretically, the removal

rate parameter could be written as a function of the virus, which inevitably,

would cause the system to elicit different behaviours. Future work will involve

replacing one or more constant parameters by functions of either variables or

time.

Experimental observations showed distinct differences between the clinically-

determined fast and slow progressor groups. The number of SFC (number of

HIV-specific cells producing IFN-γ) varied quantitatively both within the fast

and slow progressor groups, and within on and off-treatment settings. Experi-

mental evidence supports the theory that there are also qualitative differences
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between the SFC in the fast and slow progressor groups. Future work will

involve determining why this is and incorporating this into the model.

There are at least several causes for diminished functional ability of HIV-

specific CD8+ T cells but all are spurred by the presence of HIV. Whether

it is a result of the loss of help from HIV-specific CD4+ T cells [Lichterfeld

et al., 2004; Yue et al., 2004], or high turnover of HIV-specific CD8+ T cells

leading to exhaustion, it is evident that disease progression is linked to the

inability of HIV-specific CD8+ T cells to do what they are meant to do. It

is therefore likely that infected individuals who progress quickly through dis-

ease (fast progressors) have decreased IL-2 production and a larger fraction

of preterminally differentiated cells resulting in overall loss of control of viral

replication which translates into low CD4 T cell counts and high virus loads.

On the other hand, infected individuals who do not progress quickly through

disease (slow progressors) have normal IL-2 production and a larger fraction

of terminally differentiated cells [Betts et al., 2005].

We can further speculate as to how the HIV-specific CD8+ T cells exam-

ined in the HIV-1-infected individuals in this study are qualitatively different.

Functionally intact HIV-specific CD8+ T cells produce cytokines such as IFN-

γ and IL-2 and can differentiate into terminally-differentiated effector CTL

as part of normal immune responses against the virus. Functionally impaired

cells are characterized by a loss of ability to produce and respond to these cy-

tokines and to fulfill functional effector CTL duties [Wherry & Ahmed, 2004;

Kristensen et al., 2002; Appay et al., 2000]. Studies relate progressive HIV

infection to decreased IL-2 production by HIV-specific T cells [Zimmerli et al.,

2005; Kinter & Fauci, 1996; Ghezzi et al., 1997]. IL-2 is a T cell growth factor
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and controls the functions of T cells. HIV-specific CD8+ T cells that become

activated to impose effector functions require IL-2 to drive clonal expansion

(proliferation) and differention into effector and memory T cells. Therefore,

a lack of sufficient IL-2 to drive clonal expansion of T cells translates into

progressive infection associated with low CD4+ T cell counts and high virus

loads. We saw this trend in the fast progressor group.

Decreased IL-2 production may play a role in improper maturation of HIV-

specific CD8+ T cells into fully functional immune effector cells [Kristensen et

al., 2002; Wherry & Ahmed, 2004]. Memory differentiation has been linked

to the appearance of cells with the capacity to produce IL-2 [Kristensen et

al., 2002; Saparov et al., 1999]. Studies show that progressive HIV disease is

associated with expansion of HIV-specific CD8+ T cells with a preterminally

differentiated phenotype [Appay et al., 2000; Champagne et al., 2001; Yue

et al., 2004]. Preterminal differentiation of HIV-specific CD8+ T cells would

create a pool of cells unable to fulfill effector duties as expected for inapparent

slow disease progression.

Studies have also linked progressive HIV infection to loss of functional CTL

[Chia et al., 1994]. HIV-specific CD8+ T cells (CTL) can become function-

ally impaired over time by becoming perforin-deficient [Migueles et al., 2002;

Appay et al., 2000]. A perforin-deficient HIV-specific CD8+ T cell will have

diminished capacity to kill virally-infected cells, which would likely translate

into higher virus loads [S.A. Migueles et al., 2002; Borrow et al., 1994; V. Ap-

pay et al., 2000]. The loss of functional CTL is likely linked to the perpetual

generation of these cells in response to the presence of the virus. The precursor

cells for these CTL may also have limited regenerative capacity and eventu-
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ally become deleted or clonally exhausted and disappear completely [Wolthers

et al., 1996; Mackall et al., 1997]. Studies have indeed suggested that HIV-

specific CD8+ T cells have a high turnover rate based on progressively reduced

chromosome telomere length of these cells in HIV-infected individuals and may

result in the rapid consumption of terminally differentiated HIV-specific CD8+

T cells. (Each time a cell divides, its telomere length shortens [Allsopp et al.,

1995].)

Future work may involve assessing the proliferative abilities of HIV-specific

CD8+ T cells by measuring IL-2 responses from clinically-defined fast and

slow progressors from a larger cohort of infected individuals and thus allow a

determination of the functional ability of these cells to proliferate in response

to restimulation. The ratio between the amount of IFN-γ and IL-2 produced

by the HIV-specific CD8+ T cells could be determined for each of the fast and

slow progressor groups to further define the qualitative differences between

these cells.

In addition, assessments of the phenotypic markers for the HIV-specific

CD8+ T cells in the fast and slow progressor groups could be done to deter-

mine potential differences in differentiation stages of the HIV-specific CD8+

T cells. As previously discussed, progressive disease is associated with skewed

maturation of memory HIV-specific T cells. Studies designed to delineate the

phenotypes of the HIV-specific CD8+ T cells in fast and slow progressors may

help to elucidate the reasons why the differentiation pathways are different.

Maintenance of effective immune responses and stimulation of cellular im-

mune response mechanisms are essential to the health of an HIV-infected in-

dividual. Both mathematical and experimental assessments of the quantita-
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tive and qualitative differences between clinically-defined subgroups of a small

HIV-infected cohort show that slow progressors have lower off-treatment viral

setpoints which are determined by both the quantity of HIV-specific CD8+ T

cells and by their quality. The rate at which these cells remove infected cells

appears to be linked to the ability of the immune system to suppress the virus

to controllable levels in the absence of treatment. The HIV-specific CD8+ T

cells are thus more functionally efficient in slow progressors.

Ultimately, the model indicates that, despite differences in removal rates

among HIV-infected individuals, treatment interruption can be used to tran-

siently boost HIV-specific CD8+ T cell responses but cannot be used to reset

the viral setpoint. The model predicted that treatment interruption can only

be used to transiently delay disease progression implying no constructive im-

mune enhancement during the treatment interruption phases. Our results

thus corroborate that treatment interruption is in fact useful, but limited as a

means to perturb the system toward a more desirable state.

The results of this work can be used to promote the potential usefulness

of interrupting treatment. Ultimately, it is the choice of the individual as

to whether or not the benefits of interrupting treatment outweigh the risks.

A month break from the toxic drugs would be a great relief for most and

if carefully monitored, an individual should, in theory, be able to take these

breaks.
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Appendix

Cluster 1 of 2 contains 16 cases

Members Statistics

Case Distance | Variable Min. Mean Max. St.Dev.

Case 7 0.17 | VL 4.77 5.38 5.88 0.44

Case 8 0.58 | CD4 1.43 2.09 2.61 0.42

Case 9 0.17 |

Case 10 0.48 |

Case 11 0.26 |

Case 12 0.31 |

Case 13 0.50 |

Case 14 0.53 |

Case 15 0.50 |

Case 16 0.44 |

Case 17 0.31 |

Case 18 0.57 |
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Case 19 0.35 |

Case 20 0.46 |

Case 21 0.40 |

Case 22 0.38 |

------------------------------------------------------------

Cluster 2 of 2 contains 6 cases

Members Statistics

Case Distance | Variable Min. Mean Max. St.Dev.

Case 1 0.46 | VL 1.70 3.70 4.37 1.02

Case 2 0.48 | CD4 2.39 2.66 2.97 0.21

Case 3 0.08 |

Case 4 0.22 |

Case 5 0.44 |

Case 6 1.43 |
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